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Abstract  

The constant two-dimensional magnetohydromagnetic (MHD) free convective flow of an incompressible 

viscous Bingham fluid, which conducts electricity between two parallel vertical porous plates, has been looked 

at in the present study. The impact of an induced magnetic field caused by the velocity of an electrically 

conducting fluid is taken into account. A collection of simultaneous ordinary differential equations govern the 

motion of the fluid. By employing the perturbation approach, their dimensionless analytical solutions for the 

temperature field, the induced magnetic field, and the velocity field have been produced. Additionally, the 

expression for the induced current density was found and computed. The temperature profile, induced current 

density profile, induced magnetic field profile, and velocity profile are graphically illustrated as a function of 

several non-dimensional factors. It is discovered that the suction parameter increases the induced magnetic field 

but decreases the velocity field and induced current density. 

 

Keywords: Porous plates, free convective flow, induced magnetic field, induced current density, viscous and 

magnetic dissipation 

 

INTRODUCTION 

     MHD free convective fluxes of viscoplastic 

fluids, such Bingham fluids, are fundamental 

to many engineering fields, like chemistry, 

geophysical, and materials processing. It is 

essential to comprehend how these intricate 

fluids behave when subjected to an external 

magnetic field in order to maximize industrial 

efficiency. 

     The MHD free convection flow of a 

Bingham fluid refers to the study of fluid flow 

that involves the combined effects of MHD 

(the study of the magnetic properties of 

electrically conducting fluids) and free 

convection (natural fluid motion due to 

buoyancy forces). The fluid under study in this 

instance is a Bingham fluid, a kind of non-

Newtonian fluid with yield stress, which 

means that up until a specific stress threshold 

is crossed, it acts like a solid. Researchers 

usually take into account the interactions 

between buoyancy forces, magnetic fields, and 

the rheological characteristics of the Bingham 

fluid when examining the MHD free 

convection flow of a Bingham fluid. The 

Lorentz force, which results from the 

interaction between the magnetic field and the 

electrically conducting fluid, can greatly affect 

the flow behaviour of the Bingham fluid in the 

presence of a magnetic field. 

     In order to account for the unique 

rheological characteristic of Bingham fluid, 

the researcher examining this kind of flow 

frequently with the governing differential 

equations that define the conservation of 

momentum, mass, energy, and magnetic 

inductions. In addition, boundary conditions, 

material characteristics, and outside variables 

like temperature gradients and magnetic field 

intensities might be taken into consideration. 

     Applications for studying MHD free 

convection flow of Bingham fluids can be 
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found in chemical engineering, materials 

processing, geophysics, and metallurgy, 

among other domains. In non-Newtonian 

fluids, the relationship between shear stress 

and shear rate is different. There may even be 

a time-dependent viscosity in the fluid itself. 

Consequently, it is impossible to define a 

constant coefficient of viscosity. While 

viscosity is a widely used term in fluid 

mechanics to describe a fluid's shear 

characteristics, it may not be sufficient to 

characterize non-Newtonian fluids. Employing 

multiple other rheological properties—which 

are evaluated using various devices called 

rheometers and link stress and strain rate 

tensors under a variety of flow conditions, 

such as oscillatory shear or extensional flow—

is the most efficient way to examine them. 

Continuum mechanics makes extensive use of 

tensor-valued constitutive equations, which 

facilitate a more in-depth examination of the 

properties. Free convection in vertical 

channels has been extensively studied under 

various physical effects in the last few decades 

due to its significance in numerous 

engineering applications, such as the 

temperature control of electronic equipment, 

the design of passive solar systems for energy 

conversion, the cooling of nuclear reactors, the 

design of heat exchangers, chemical devices 

and process equipment, geothermal systems, 

and others.  

     Mohammad-Reza (2015) conducted 

research on the investigation of entropy 

formation and heat transport in Bingham 

plastic fluids within circular microchannels. 

Their goal is to assess the gap between the two 

analytical solutions for theoretical assessments 

of grouting in rock cracks and to theoretically 

and numerically clarify the form of the plug 

flow region in the 2D radial flow of a 

Bingham fluid.  

       The Phenomenological Friction Equation 

for turbulent flow of Bingham fluids was 

explored by Anbarlooei et al. (2017). Under 

conditions of homogeneous wall heat flux, the 

thermal properties of Bingham plastic fluid 

flows are examined in circular micro-channels. 

Furthermore, according to Zou et al. (2018), 

grouting is essentially a two-phase flow 

process where groundwater is displaced in 

rock fissures by non-Newtonian fluids called 

grouts. It is therefore always reasonable to 

expect a certain degree of uncertainty when 

applying the analytical solutions covered in 

this book to the operation and design of real 

systems. 

       The development of numerical tools for 

more realistic grout rheological properties in 

realistic structures of rock fractures and 

associated networks, as well as for the two-

phase flow process, will be a significant step 

toward the development of quantitative tools 

for the design and management of rock 

grouting applications (Zou et al., 2019). Lawal 

and Erinle (2019) study the viscous 

dissipation-induced magnetic field-induced 

MHD flow of a third-grade fluid in a porous 

channel. They discovered that a higher 

magnetic field raised the generated magnetic 

field while decreasing the fluid's velocity.             

The mathematical analysis of the EMHD 

laminar flow of Bingham fluid streaming 

between two Riga plates that created the heat 

radiation effect was presented by Mollah 

(2019). He was able to illustrate how various 

factors, such as the local Nusselt number, 

affected the flow pattern and the local shear 

stress using tables and graphs. 

      In this study, we have taken into account 

the induced magnetic field while studying the 

hydromagnetic free convective flow of an 

electrically conducting, viscous, 

incompressible Bingham fluid between two 

parallel vertical porous plates. Using the 

perturbation technique, the governing 

equations for the temperature, induced 

magnetic, and velocity fields have been 

analytically solved. Additionally, the formula 

for the induced current density has been 

obtained. The graphs illustrate how different 

factors affect the profiles of velocity, induced 

magnetic field, temperature, and induced 

current density. 

 

FORMULATION OF THE PROBLEM 

 
     We examine the free convective flow under 

continuous suction between two infinitely 

vertical porous plates of a viscous 

incompressible Bingham fluid that conducts 

electricity. As seen in Figure 1, the x  - axis is 

perpendicular to the plates and the y   - axis is 

taken vertically upward along them. There is 

an h-interval between the plates. While 

maintaining a steady temperature 


0T  on the 

other plate, one plate is kept at a constant heat 
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flux. The variables describing the flow will 

solely rely on the transverse coordinate y   

because of the plates infinite area resulting in a 

single non-zero component in the x direction 

of the fluid velocity. A consistent magnetic 

field B  of strength 0B  is applied to the plates 

perpendicularly. The plate at 0=y  is thought 

to be non-conductive, whereas the opposite 

plate at hy =   is assumed to have electrical 

conductivity.  For a fluid having a high degree 

of electrical conductivity σ, this in turn 

induces a magnetic field B along the x - axis. 

Suppose ( )0,0,uq =  
is the fluid velocity 

along x - axis and ( )0,, yx BBB = is the 

magnetic field of the system under 

consideration. 

 

 

 

 

 

 

 

 

 

 

Figure 1. A Schematic diagram of the physical 

mode 

 
     The following is the governing equation of 

the Bingham fluid when there is an induced 

magnetic field present but no body forces or 

body couplings present: 

 

Continuity equation 

 
0= q                               (1)                                                                          

 

Momentum equation 

( ) 

( ) ben FBBB

pqq

+







+

+−=

2

2

1




  (2)          

Energy equation           

( )  ( ) rp qltrTKTqC −+=  2

   
(3) 

 

Magnetic induction equation 

( )  ( ) BqBBq 21
+=


     (4) 

where 0 +=
dy

du
is the stress tensor,  is 

the operator,  is the density of the fluid, 

kji wvuq ++= is the velocity of the fluid, 

pC  is the specific heat capacity of the fluid, 

K  is the thermal conductivity and 
bF is the 

buoyancy force which is define as g 𝛽(𝑇 −
𝑇o). With the boundary condition,  

0=y :
K

q
TBu r

x −=== ,0,0  (5)

hy = : 0,0,0 TTBu x ===  

 

METHOD OF SOLUTION 

     Due to assumption mention earlier, 

equation (1) to (5) becomes 

 

( )

00

002

2

=+

−+++−

dy

du
v

TTg
dy

dB
B

dy

ud

dx

dP x

em 

    (6) 

0
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2

0
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2

=







+

+







++

dy

dB

dy

du

dy

du

dy

dT
v

dy

Td
K

x





        (7)

                               

0
1

002

2

=++
dy

dB
v

dy

du
B

dy

Bd xx


             (8) 

 

0=y :
K

q

dy

dT
Bu r

x −=== ,0,0  
     (9)

 

hy = : 0,0,0 TT
dy

dB
u ===  

 

Introducing the non-dimensional parameters 

that follow: 
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h
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2
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
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equation (6) to (9) in non-dimensional form 

becomes 

0
2

2

=++++− TGr
dy

dB
M

dy

du
S

dy

ud


   

(10) 
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(11) 

0PrPr
2

2

=++
dy

dB
m

dy

du
mM

dy

Bd
 (12) 

 

0=y :  1,0,0 −===
dy

dT
Bu  

                   (13) 

1=y :  0,0,0 === T
dy

dB
u

 
 

     Now, in order to solve the equations (10) - 

(12) with boundary conditions given by (13), 

we apply the perturbation technique 

 

( )2

10 )()()( cc EOyBEyByB ++=  

( )2

10 )()()( cc EOyuEyuyu ++=  (14) 

( )2

10 )()()( cc EOyTEyTyT ++=  

 

     Equating the coefficients of the same terms 

of degree and ignoring terms of ( )2

cEO  after 

substituting (14) in equations (10) through (13) 

yields the following ordinary differential 

equations with their corresponding boundary 

conditions: 

 

00
00

2

0

2

=++++− TGr
dy

dB
M

dy

du
S

dy

ud


  (15)

 

      

00 =u  at 0=y  and 00 =u  at 1=y  (16)

  

01
11

2

1

2

=+++ TGr
dy

dB
M

dy

du
S

dy

ud

      (17)

 

01 =u  at 0=y  and 01 =u  at 1=y    (18)

02
22

2

2

2

=+++ TGr
dy

dB
M

dy

du
S

dy

ud

     (20)
                            

0Pr 0

2

0

2

=+
dy

dT

dy

Td
               (21)                                         

 

10 −=
dy

dT
 at 0=y   

 and 00 =T at 1=y             (22) 
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
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
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   (23) 

01 =
dy

dT
 at 0=y  and 01 =T at 1=y    (24)                                                                            

0
Pr
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1102
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dy
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dy
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m

dy

du

dy
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 (25)

02 =
dy

dT
 at 0=y  and 02 =T  at 1=y     (26)                                          

 

0
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0
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=
dy

Bd

    (27)

        
00 =B  at 0=y    

 and   00 =
dy

dB
  at   1=y                  (28) 

0PrPr 00

2

1

2

=++
dy

dB
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dy

du
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dy
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 (29)

01 =B  at 0=y   
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and   01 =
dy

dB
  at   1=y   (30) 

       

0PrPr 11

2

2

2

=++
dy

dB
m

dy

du
mM

dy

Bd

       (31)

02 =B  at 0=y  

and 02 =
dy

dB
 at 1=y

     (32) 

The solution of (27) under the transformed 

boundary conditions given by (28) yield 

 
00 =B

                 (33) 

     Similarly, the solution of (21) under the 

transformed boundary conditions given by 

(22) yield 

 Pr

Pr

10

ye
aT

−

+=
     (34) 

     Substituting equation (33) and (34) into 

equation (15) and solve with boundary 

condition (16) to obtain  

76

Pr

1090 ayaeaeau ySy ++−= −−

         (35) 

    
     Equation (33) and (35) were substitute into 

equation (29) and compute with boundary 

condition (30) to yield

1514

2

13

Pr

12111 ayayaeaeaB ySy −+−−= −−

 (36)
 

     Substituting equation (35) and (33) into 

equation (23) and solve with boundary 

condition (24) to obtain  

1618
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2
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eaeaeaeaT

yy

ySySyySy
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−−
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 (37)
 

     Also, Equation (36) and (37) were 

substitute into equation (17) and compute with 

boundary condition (18) to gives

 

2629
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3231
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363534

2
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ayaya
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The induced current density is given as

109Pr

87 2
Pr

aya
e

a

e

Sa

dy

dB
J

ySy
++−=−=

         (39) 

     The skin friction is the other physical 

quantity of interest, as we now know how the 

velocity is expressed. Consequently, the non-

dimensional skin friction values on both walls 

are provided.    

      (40) 
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   (41) 

 

 

where 40321 ,,,, aaaa  used in the 

equation are constant. 

 

RESULTS AND DISCUSSION  
 

     Several physical parameters, including the 

suction parameter (S), the magnetic Prandtl 

number (Prm), the Hartmann number (M), and 

the Prandtl number (Pr) characterize the 

current MHD free convection model of 

Bingham fluid with induced magnetic field. 

The diagrams illustrate how different 

parameters affect the velocity profile, induced 

magnetic field profile, and induced current 

density profile. The Prandtl number (Pr) and 

the suction parameter(S) are the sole factors 

that alter the temperature distribution; the 

graphs also display how these parameters 

affect the temperature profiles. 
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Figure 2. Effect of Suction parameter S  on 

velocity profile when ,7.0Pr,2 ==      

5,0.5,5.0Pr === MGrm  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Effect of Suction parameter S  on 

induced magnetic field ,7.0Pr,2 ==

5,0.5,5.0Pr === MGrm  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 4. Effect of magnetic parameter M on 

velocity profile when  ,7.0Pr,2 ==

0.2,0.5,5.0Pr === SGrm  

 

 

     The impact of the suction parameter on the 

velocity and induced magnetic field profile is 

depicted in Figures 2 and 3. It is discovered 

that, as shown in Figure 3, an increase in the 

suction parameter causes a drop in the velocity 

profiles as well as an induced magnetic field. 

 

     The influence of the magnetic parameter on 

the velocity and induced magnetic field profile 

can be seen in Figures 4 and 5. It is discovered 

that both the induced magnetic profile and 

velocity decrease with an increase in the 

magnetic parameter. 

 

     Figures 6 and 7 show how the thermal 

Grashof number affects the velocity and 

induced magnetic field profile. It has been 

found that when Grashof number increases, 

the velocity profile increases but the induced 

magnetic field values stay negative, indicating 

a distinct absolute decrease in the induced 

magnetic field as Gr increases. 
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Figure 5. Effect of magnetic parameter M on 

induced magnetic profile when ,7.0Pr,2 ==

0.2,0.5,5.0Pr === SGrm  

 

     Magnetic Prandtl number affects velocity 

and induced magnetic field profile, as seen in 

Figures 8 and 9. A rise in magnetic Prandtl 

number results in a low velocity and induced 

magnetic field profile. 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Effect of Grasshof number Gr on 

induced magnetic field when   ,7.0Pr,2 ==

0.2,0.5,5.0Pr === SMm  

 

     Figures 10 and 11 depict the fluid velocity 

profile and induced magnetic field, which both 

exhibit increasing behavior as the Prandtl 

number increases. In contrast, Figure 12 

displays an initial increase followed by a 

subsequent decrease in the temperature profile 

as the Prandtl number increases. 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Figure 6. Effect of Grasshof number Gr on 

velocity profile when ,7.0Pr,2 ==

0.2,0.5,5.0Pr === SMm  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Effect of magnetic Prandtl number mPr

on velocity profile when  ,7.0Pr,2 ==

0.2,0.5,5.0 === SMGr
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Figure 9. Effect of magnetic Prandtl number mPr
on induced magnetic profile when ,7.0Pr,2 ==

0.2,0.5,5.0 === SMGr
 

 

     Figure 13 illustrates how the induced 

current density varies with the magnetic 

Prandtl number Prm, and Figure 14 shows 

how it varies with the Hartmann number M. 

The figures make it evident that there is a 

rising trend in the impact of the magnetic 

Prandtl number and the Hartmann number on 

the induced current density profile. As the 

Prandtl number Pr increases, the induced 

current density falls, as Figure 15 illustrates. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Effect of Prandtl number Pr on the 

velocity profile when ,5.0Pr,2 == m
 

0.2,0.5,5.0 === SMGr
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Effect of Prandtl number Pr on the 

velocity profile when ,5.0Pr,2 == m

0.2,0.5,5.0 === SMGr  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 12. Effect of Prandtl number Pr on the 

temperature profile when ,5.0Pr,2 == m

0.2,0.5,5.0 === SMGr  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 13. Effect of magnetic Prandtl number 

mPr on induced current density when

,7.0Pr,2 == 0.2,0.5,5.0 === SMGr  
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Figure 14. Effect of magnetic parameter M on 

Induced current density when  ,7.0Pr,2 ==

0.2,0.5,5.0Pr === SGrm  

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Figure 15. Effect of Prandtl number Pr on the 

Induced current density when ,5.0Pr,2 == m

0.2,0.5,5.0 === SMGr  

 

 

 

 

 

      Table 1.  Suction velocity and magnetic Prandtl number effects on skin friction 

 

S 
,5.0Pr,7.0Pr,2 === m

5,0.5 == MGr  

 

Prm 
,5.0,7.0Pr,2 === Gr

0.2,0.5 == SM  

0  
1  0  

1  

0.5 1.242182 -0.691530 0.3 1.876976 -0.680407 

1.0 1.308804 -0.643910 0.5 1.446132 -0.557201 

1.5 1.376947 -0.599094 0.7 1.126402 -0.476159 

1.0 1.446132 -0.557201 1.0 0.762722 -0.395891 

 

 
              Table 2: Prandtl number and Hartmann effects on skin friction 

 

 

 

 

     Table 1 displays the effects of the magnetic 

Prandtl number and the suction parameter on 

the skin friction on the two plates. This table 

unequivocally demonstrates that as the suction 

velocity increases, so does the skin friction on 

both plates. Additionally, skin friction on one 

plate reduces at and increases on the other 

plate at a higher magnetic Prandtl number.  

         Table 2 illustrates the impact of the 

Hartmann and Prandtl numbers on skin 

friction. It is observed that skin friction 

increases on the plate at y = 1 and reduces on 

the plate at y = 1 when the values of the 

Prandtl and Hartmann numbers grow. 

 

 

 

 

Pr 
,5.0,5.0Pr,2 === Grm

0.2,0.5 == SM  

 

M 
,5.0Pr,7.0Pr,2 === m

0.2,0.5 == SGr  

0  1  0  1  

0.3 1.446132 -0.557200 1.0 2.515458 -0.923115 

0.5 1.350727 -0.534466 2.0 2.213559 -0.826580 

0.7 1.267199 -0.515231 3.0 1.857102 -0.711315 

1.0 1.160754 -0.491771 4.0 1.531828 -0.604303 
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CONCLUSION 

     An analysis has been conducted on the 

hydromagnetic free convective flow between 

two vertical parallel porous plates, considering 

the influence of an induced magnetic field. It 

is found that the velocity profiles decrease 

when the suction parameter, Prandtl number, 

magnetic Prandtl number, and Hartmann 

number increase. Additionally, it is noted that 

the induced magnetic field increases with 

increases in the suction parameter, the Prandtl 

number, and the Hartmann number, but 

decreases with increases in the magnetic 

Prandtl number. When the magnetic Prandtl 

number rises, the induced current density 

profile rises as well; however, when the 

suction parameter, Hartmann number, and 

Prandtl number rise, it falls. 

     When creating engineering designs, the 

suction/injection velocity on the porous plates 

can be adjusted to control the velocity and 

induced magnetic field. 
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