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Abstract 

 
This studies aimed to assess the forecasting capabilities of Seasonal Autoregressive Integrated Moving 

Average(SARIMA) and Seasonal autoregressive fractional integral moving average (SARFIMA) models in 

modelling the weather prediction of Ogun State, Nigeria. The results indicate that the SARFIMA model 

outperforms SARIMA in terms of fit, serial correlation analysis, and accuracy measures. Forecast validation 

statistics confirmed the efficacy of the SARFIMA model, as demonstrated by various validation tools. Out-of-

sample forecasts for 2019 to 2028 predict a steady rise in temperature, particularly in the Ijebu Ode axis 

compared to the Abeokuta region. This temperature increase suggests that climate change could significantly 

impact the livelihoods and economic sectors of Ijebu Ode and its surroundings if adequate preparations are not 

implemented. 
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INTRODUCTION 
Time series forecasting plays a pivotal role 

in meteorology and environmental 

applications, encompassing variables like 

humidity, rainfall, temperature, stream flow, 

and more. This technique relies on historical 

data to construct the most suitable model for 

predicting future values. As described by 

Raicharoen (2003), it involves utilizing past 

data to forecast forthcoming values accurately. 

Weather forecasts are formulated by gathering 

information about the current state of the 

atmosphere within a specific area and 

leveraging this knowledge to predict 

atmospheric changes. Temperature exerts 

undeniable effects on various aspects of the 

environment, agriculture, water consumption, 

and human activities, as noted by Sarraf et al. 

(2011). Additionally, it influences nearly all 

other climatic variables, including relative 

humidity, evaporation rate, wind direction, 

wind speed, and precipitation patterns. 
    

 

 

 

 

However, providing precise forecasts of 

air temperature is challenging due to its 

complex and chaotic nature. 

 

Various researchers, including Murat et al. 

(2018), Jibril and Sanusi (2019), Adams and 

Bamaga (2020), Nnoka et al. (2020), Amjad et 

al. (2023), Adewole (2023), and others, have 

conducted studies on modelling 

meteorological variables in diverse locations 

using time series analysis. Over time, scholars 

have introduced numerous time series models 

in the literature to enhance the effectiveness 

and accuracy of time series modelling and 

forecasting climate change, both in Nigeria 

and globally. Among these approaches, the 

Autoregressive Integrated Moving Average 

(ARIMA) model is a well-known approach for 

method for achieving forecasting accuracy and 

efficiency across various types of time series 

models.  Box and Jenkins introduced an 

extended ARIMA model known as Seasonal 

Autoregressive Integrated Moving Average 

(SARIMA) models, specifically designed for 

modeling univariate time series data with 

seasonal components. SARIMA models are 

proficient at characterizing time series that 

exhibit non-stationary behaviors both within 
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and across seasons (Box and Jenkins, 1976). 

Many time series data observations 

demonstrate long memory, prompting the 

development of methodologies capable of 

estimating and predicting autocorrelation 

functions that decay slowly to zero. A series 

displaying a fractionally integrated pattern is 

typified by a stable average sequence of long 

swings. This phenomenon is observed through 

the Autocorrelation Function (ACF) declining 

very slowly over time (Granger !980)). The 

Autoregressive Fractionally Integrated Moving 

Average (ARFIMA) model, introduced by 

Granger and Joyeux (1980), is a fractional 

order model technique that extends 

conventional integer-order models such as 

Autoregressive Integrated Moving Average 

(ARIMA) and Autoregressive Moving 

Average (ARMA) models. Additionally, the 

Seasonal Autoregressive Fractionally 

Integrated Moving Average (SARFIMA) 

model, introduced by Porter-Hudak (1990) 

expands upon ARFIMA models to address 

both short and long memory components of 

seasonal variations. 

 

RELATED STUDIES 
Researchers have demonstrated the 

feasibility of modeling time series of any size 

using both SARIMA and SARFIMA 

estimation methods, as evidenced by studies 

conducted by Datong & Goltong (2017), 

Chukwudike et al. (2020), Ubaka et al. (2021), 

Udo and Shittu (2022), Adewole (2024), 

among others. This research endeavors to 

present iterative methods for analyzing, 

modeling, and comparing the statistical 

performance of seasonal ARIMA and seasonal 

fractional ARIMA models for predicting the 

average annual temperature of Ogun State in 

Nigeria, with Abeokuta and Ijebu Ode cities 

serving as case studies. Therefore, this 

research is crucial as it provides vital 

information required by meteorologists, 

agriculturists, and climatologists, aiding 

decision-makers in their future planning 

endeavours in Ogun State, Nigeria. 

  

 

 

 

 

 

MATERIALS AND METHODS 

 

Study Area and Data Source 

Ogun State is located in Southwestern 

Nigeria within latitudes 6°N and 8°N and 

longitudes 3°E and 5°E. The state is bounded 

on the west by the Republic of Benin and on 

the east by Ondo State. To the north is Oyo 

state while Lagos State and the Atlantic Ocean 

are to the south. The state covers about 

16,762square kilometer which is 

approximately 1.81 percent of Nigeria’s land 

mass of about 923,768 square kilometers. The 

annual average temperature data of Abeokuta 

and Ijebu ode city in Ogun covering the period 

of 1990 – 2018 obtained from NIMET 

(Nigeria metrological Agency) data 

management unit will be employed for the 

study. 

 

Seasonal Autoregressive Integrated Moving 

Average (SARIMA) 

A seasonal ARIMA model generally 

consist of models with seasonal and non-

seasonal components of (p, d, q) and (P, D, Q) 

respectively, it is expressed as; SARIMA (𝑝, 

𝑑, 𝑞)(𝑃, 𝐷, 𝑄). 

The seasonal component terms of the 

model are related to the non-seasonal 

component, but operate with a difference of 

back shift during the respective season 

θ𝑝(𝐿)Θ(𝐿𝑠)(1 − 𝐿)𝑑(1 − 𝐿𝑠)𝐷𝑋𝑡 =

 ∅𝑞(𝐿)ϕ𝑞(𝐿𝑠)𝜖𝑡                       (1)

                 

where  θ𝑝(𝐿) = 1 − Θ1𝐿 − Θ2𝐿2−, … , Θ𝑝𝐿𝑝   

                                   (2    

 Θ𝑝(𝐿𝑠) = 1- Θ𝑝𝐿𝑠, … , Θ𝑝𝐿𝑝𝑠                   (3)                         

                                                                               

   ∅𝑞(𝐿) = 1 + ∅𝐿 + ∅𝐿−, … , +∅𝑞𝐿𝑞          (4)                                                                                                                      

  ϕ((𝐿𝑠) = 1 + ∅1𝐿𝑠 + ∅𝐿2−, … , +∅𝐿𝑞𝑠      (5)                                                                     

where L represents the non-seasonal backshift 

operators and 𝑑 is the non-seasonal 

differencing order. For seasonal part,  Θ𝑝 is the 

seasonal AR component coefficients while θ𝑞  

is the seasonal moving Average component 

coefficients, 𝐿𝑠 is the seasonal backshift 

operators and D representing the seasonal 

differencing order. 

 

 

 

 

 

 

Box Jenkins Methods of SARIMA Model 
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Identifying a perfect Seasonal ARIMA 

model for a specific time series analysis, Box 

and Jenkins (1970) projected a procedure that 

consists of four major steps, namely, 

 i) Identification of the model: discovering a 

tentative model by cshecking the stationarity 

of the data. 

 ii) Parameters of the model estimation: 

Estimating the coefficients of the models by 

maximum likelihood estimation methods. 

 iii) Checking the goodness of fit of the model: 

The diagnostic testing of the model involves 

the normality test (Jarque and Bera, 1980 test), 

autocorrelation test (Ljung and Box, 1978 

statistic), ARCH (squared residuals’ 

(iv)  Utilization of the final model in 

forecasting 

 

ARFIMA Model Process 

The general form of Autoregressive 

Fractionally Integrated Moving Average 

(ARFIMA) process is stated as: 

 θ(L) (1 − L)dXt =  ∅(L)εt                  (6) 

where, L is defined as the lag operator such 

that 

LXt = LXt−1                                            (7) 

And the (1 −
𝐿)d fractional difference operator  replaced 

the usual standard difference operator (1 − L) 

of a short memory SARIMA process, d is a 

non-integer parameter that represent the level 

of the fractional difference. εt is independently 

and identically distributed with mean 0 and 

variance σ2, θ(𝐿) and ∅(𝐿) signify AR and 

MA components respectively. The method is 

covariance stationary for the range of - 0.5 < d 

< 0.5; involving mean reversion when d <1. 

Granger (1980), Granger and Joyeux (1980), 

and Hosking (1981) works described 

ARFIMA process as a generalized fractional 

white-noise process.  

 

SARFIMA (p,d,q)× (P,D,Q)s Process 

A special formulation of the generalized 

ARFIMA model was considered by Porter-

Hudak (1990). This formulation enables the 

reproduction of long memory periodicity from 

short memory in the autocorrelation function 

of the process, the general form of the 

SAFRIMA model can be defined as ; 

Let {𝑥𝑡} represent a stochastic process, 

then {𝑥𝑡}𝑡𝜖𝑧 is the zero mean,the seasonal 

autoregressive fractionally integrated moving 

average process, denoted by 

SAFRIMA(𝑝, 𝑑, 𝑞) x (𝑃, 𝐷, 𝑄)𝑠  is an 

extension of the long range dependence in the 

mean ARFIMA( p, d,q) process, the 

SAFRIMA(𝑝, 𝑑, 𝑞) x (𝑃, 𝐷, 𝑄)𝑠 process 

describes time series with long memory or 

long range dependence or persistent periodical 

behavior at finite number of spectrum 

frequencies SAFRIMA(𝑝, 𝑑, 𝑞) x (𝑃, 𝐷, 𝑄)𝑠 

process is express as; 

θ(L)Θ(𝐿𝑠)(1 − 𝐿)𝑠(1 − 𝐿𝑠)𝐷𝑥𝑡 = 

∅(L)ϕ(𝐿𝑠)εt    for  𝑡𝜖𝑧   (8)                                        

              

where 𝑠𝜖𝑁 denotes the seasonal period, L 

represents the backward shift operator, 

(1 − 𝐿𝑠)𝐷 is the seasonal difference 

operator Θ(∙)  and ϕ(∙) and are the 

polynomials of degrees P and Q, respectively, 

defined by:  
Θ(𝐿𝑠) = ∑ (−Θ𝑖)𝐿𝑠𝑖𝑃

𝑖=0                                (9)             

     

   

ϕ(𝐿𝑠) = ∑ (−ϕ𝑗)𝐿𝑠𝑗𝑄
𝑗=0                 (10)                

      

whereΘ𝑖and ϕ𝑗  are constants. The seasonal 

difference operator (1 − 𝐿𝑠)𝐷, with seasonality 

𝑠𝜖𝑁 for all D > −1, is defined by means of the 

binomial expansion; 

(1 − 𝐿𝑠)𝐷= 1 − 𝐷𝐿𝑠 −
(𝐷(1−𝐷𝐿2𝑠)

2!
−

 
(1−𝐷(2−𝐷)𝐿3𝑠)

3!
−, …,                                                

(11)                                   

        

Assume that θ𝑝(𝐿)Θ𝑝 (𝐿𝑠) =

 ∅𝑞(𝐿)ϕ𝑞(𝐿𝑠) = 0 in equation (1) above has 

no common zero, then the following criteria 

hold for SAFRIMA model;     

a)The stochastic process {𝑥𝑡} is stationary if 𝑑 

+ 𝐷 < 0.5, 𝐷 < 0.5and θ𝑝(𝐿)Θ(𝐿𝑠) ≠ 0 for |𝐵| 

≤ 1. 

 b). The stationary process {𝑥𝑡} has a long 

memory property if 0 < 𝑑 + 𝐷 < 0.5,0 < 𝐷 < 

0.5   and    

        θ𝑝(𝐿)Θ𝑝 (𝐿𝑠) ≠ 0 for |𝐵| ≤ 1.  

c). The stationary process {𝑥𝑡} has an 

intermediate memory property if −0.5 < 𝑑 + 𝐷 

< 0, −0.5 <    

      𝐷 < 0 and θ𝑝(𝐿)Θ𝑝 (𝐿𝑠) ≠ 0 for |𝐵| ≤ 1. 

d). The series; {𝑥𝑡} is non-stationary if 0.5 ≥ 𝑑 

+ 𝐷 < 1.  

SARFIMA model allows times series to be 

fractionally integrated, it generalize the integer 

order of SARIMA model integration in 

allowing the difference parameter to take on 
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fractional values If a series exhibits long 

memory, it is neither stationary (I (0)) nor is it 

a unit root (I (1)) process; the series is an I(d) 

process.  

 

Pre-Estimation process 

Long Memory Test 

One of the preliminary steps in estimating 

SARFIMA models is to determine whether the 

observed data series exhibits long memory 

behavior. This can be assessed using the Hurst 

Exponent technique to check if the data 

conforms to long memory structures. 

 

 Hurst Exponent 

The Hurst exponent is one of the time 

series long-memory families. The long 

memory structure happens when the values of 

H fall in the interval 0.5 < 𝐻 < 1. The Hurst 

exponent estimation process uses the formula: 

𝐻 =  
log(

𝑅

𝑆
)

log(𝑁)
              (12) 

 N signifies length of the sample data and  
𝑅

𝑆
 is 

the matching value of the rescaled evaluation.  

Techniques of augmented Dickey-Fuller 

(ADF) and Kwiatkowski, Phillips, Schmidt 

and Shin (KPSS) tests will be employed to 

investigate stationarity of the meteorological 

data in Ogun state and fractional integration 

modelling. 

Augmented Dickey Fuller Test of 

Stationarity: ADF test model is expressed as; 

ΔXt =  αXt−1 +  Ytφ +  β1∆Xt−1 +
 β2∆Xt−2+, … , βp∆Xt−p         (13) 

where,  

ΔXt  represents the differenced series 

∆Xt−1 is the immediate past observations. 

 Yt  signifies the optional exogenous regressor 

which is either a constant or a constant trend 

α and φ are parameters needed to be 

estimated. 

β1, … , βp denotes the coefficients of the lagged 

terms. 

The ADF test statistic is expressed as; 

tα =  
α⏞

Se(α⏞)
          (14) 

The test of hypothesis involves; 

H0:α = 0,   it infers that the series has unit 

roots 

H1:α < 0,   it infers that the series has no unit 

roots. 

Decision rule: Reject H0:  if tα is less than 

asymptotic critical value 

Kwiatkowski-Philips-Schmidt-Shin 

(KPSS)Test 

The KPSS test of stationarity was 

developed by Kwiatkowski et al (1992). The 

null hypothesis assumes that the Data 

Generating Process (DGP) is stationary. 

Considering the following DGP without a 

linear trend; 

yt =  xt +  zt                      (15) 

where  

xt =  α1xt−1 +  α2xt−2+, … , αpxt−p + ut  (16) 

ut~iid(0. σ2) and zt is assume to follow a 

stationary process. 

KPSS test statistic is given as; 

KPSS =  
1

T2  ∑
st

2

σ2p
T
t=1                     (17) 

where st =  ∑ m̂j
t
j=1   with m̂t= xt − x and σ̂p

2
 

is an estimator of the long run variance of the 

 stationary Process zt. 
 

SARFIMA Process Estimation 

Estimation of Fractional Difference 

Parameter  

The long memory parameter can be 

estimated using three major approaches: non-

parametric, semi-parametric, and parametric 

methods. This research will focus exclusively 

on the semi-parametric method. 

 

Semi-parametric Method  

Semi-parametric method of estimating 𝑑 

in the frequency domain proposes by Geweke 

and Potter-Hudak (1993). This method 

considers the power spectrum of the 

𝐴RFIMA(𝑝, 𝑑, 𝑞) process, {𝑥𝑡}   given as, 

𝑓𝑋(𝑤) = |1 − 𝑒−𝑖𝑤| −2𝑑𝑓𝑧(𝑤)       (18) 

Where 𝑓𝑋(𝑤) and  𝑓𝑧(𝑤) are the spectral 

densities of  𝑥𝑡 and 𝑥𝑧 respectively, can be 

simplified as; 

  𝑙𝑛 [𝑓𝑋(𝑤)]=-[ 𝑑𝑙𝑛[4𝑠𝑖𝑛2(𝑤/2)] + 𝑙𝑛𝑓𝑧(𝑤)
                                (19) 

𝑙𝑛 [𝑓𝑋(𝑤𝑡)]= 𝑙𝑛 [𝑓𝑧(𝑤𝑡 = 𝑜)] - 𝑑𝑙𝑛[4𝑠𝑖𝑛2(𝑤𝑡/
2)] + 𝑙𝑛 [𝑓𝑧(𝑤𝑡)]-𝑙𝑛 [𝑓𝑧(𝑤𝑡 = 𝑜)]                

(20) 

In forms of regression equation, equation 

(21) becomes 

𝑙𝑛 [𝑓𝑋(𝑤𝑡)]=𝑎 + 𝑏𝑥𝑡 + 𝜀𝑡                (21)    

where 

 𝑎 =  𝑙𝑛 [𝑓𝑧(𝑤𝑡 = 𝑜)]                            (22)

  

𝑥𝑡 = ln [4𝑠𝑖𝑛2 (
𝑤𝑡

2
)]                    (23) 

b=-d 
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𝜀𝑡 =  { 𝑙𝑛 [𝑓𝑧(𝑤𝑡)]− 𝑙𝑛 [𝑓𝑧(𝑤𝑡 = 𝑜)]is the 

error in the model for 𝑡 = 1,2, ⋯ ,n. 

  

Post Estimation Process 

Model Selection 

Optimum selection criteria were employed in 

model selection by selecting the model with 

minimum Akaike Information Criteria (AIC) 

and Schwarz Information Criterion (SIC) 

  

Model Diagnostic 

To validate the appropriateness of the 

selected SARIMA and SARFIMA models, the 

white noise, serial correlation, and 

heteroscedasticity were evaluated using the 

residual normality test, the Portmanteau test, 

and the Autoregressive Conditional 

Heteroscedasticity Lagrange Multiplier 

(ARCH-LM) test, respectively. This involved 

examining the hypothesis that the residuals are 

white noise, assumed to be independently 

distributed. 

Employing the methods of Ljung and Box 

(1978), The estimated autocorrelations of 

residuals ρk, k=1,2,…,K are validated via a 

chi-squared statistic:  

N(N + 2) ∑
[ρk(ε)]2 

N−K
   ≈  χ2 (K − 1)K

k=1     (24) 

          ρk(ε) ≈ N(0,1) 

  where K-1 = k-p-q, N is the sample size and ρ 

symbolize the autocorrelation coefficient.  

 

Model Forecasting and Performance 

Evaluation 

The predicting performance of selected 

models is assessed via various validation 

criterions such as Akaike Information criteria 

(AIC) and Schwarz Information Criterion 

(SIC) 

AIC =  2T − m               (25)                                                                                                                    

SIC = 2Tlogn − logm                          (26)                                                                                                               

T represents the total number of estimable 

parameters, m denotes the maximum 

likelihood, and n is the number of samples. 

Additionally, the forecast accuracy of the 

SARFIMA and SARIMA models is evaluated 

using the Root Mean Square Error (RMSE), 

the Mean Absolute Error (MAE), and the 

Mean Absolute Percentage Error (MAPE). 

MAE symbolizes the absolute difference 

between the forecasted values and the actual 

values. It estimates the average absolute 

deviation of predicted values from real values. 

The MAE is calculated as follows; 

MAE =   
1

n
 ∑ ⃒ y⏞

f
− yt⃒n

t=1                        (27)                                                              

MAPE is projected as the mean absolute 

percent error for each time period minus real 

values divided by real values. It computes the 

percentage of mean absolute error that 

occurred in the model formation. It is given as; 

MAPE =  
100

n
 ∑ ⃒

y⏞f−yt

yt

n
t ⃒                                

(28)                             

  

RMSE explicate the absolute fit of the model 

to the observed data, it is figured as follows: 

RMSE =  √
1

n
 ∑ y⏞

f
− yt

n
t=1                        (29) 

y⏞
f

 and yt represent the estimated and the real 

values respectively; n is the sample size, 

model with smaller criteria values is preferred 

for best superior forecasting precision.

RESULTS AND DISCUSSION 
 
Table 1. Descriptive Statistics  

 Mean Maxi 

Mum 

Mini 

mun 

Std. 

Dev. 

Med. Skew 

Ness 

Kurt

osis 

Jarque 

Bera 

P. 

Val. 

 Obs. 

ABEOKUT 132.44 149.83 114.12 7.52 131.33 0.046 3.23 0.079 0.96 29 

I- ODE 279.00 285.36 273.02                     3.60 278.68 0.096 -0.96 0.341 0.02 29 

 

 

Table 1 gives the summary of average 

annual temperature data in Abeokuta and Ijebu 

Ode from 1990 to 2018, Ijebu Ode reports a 

hotter  

 

 

temperature than Abeokuta.   The series are 

normally distributed for as indicated by the 

low Jarque-Bera test values and high p-value. 
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Table 2. Stationarity test results at level. 

 ADF PP KPPS 

Variables ADF Test Stat Prob. PP Test 

Stat. 

Prob. KPSSTest Stat. Prob. 

ABEOKUTA -3.0031 0.015 -2.731* 0.019 -3.6820 0.0000 

IJEBU ODE  0.2741 0.173 0.061 0.2802 -5.219 0.0000 

 Note * indicate significance at 𝛼 = 0.05 at level.  

 

The various stationarity tests at level are 

presented in Table 3. The tests showed that the 

average annual series shows nonstationary  

features. Moreover Mann–Kendall (MK) test 

in Table 3 also established a trend in the data 

series reinforcing non-stationarity 

 

 
Table 3. Seasonal Mann Kendall Trend Analysis  

Parameters/ City ABEOKUTA IJEBU ODE 

 Kendall’s tau 0.3282* 0.1623* 

Sen’s Slope 0.4524 0.1118 

𝑺 136 118 

P value 0.0014 0.0003 

Note * indicate significance at 𝛼 = 0.05  

 

The SARIMA procedure requires the 

series to meet stationarity and invertibility 

conditions for accurate modeling (Nury et al., 

2013). Non-stationarity in the series was 

addressed by differencing the data to achieve 

stationarity. The results of the stationarity test 

at the first difference are presented in Table 

4. 

 
Table 4. Stationarity test results at First Difference. 

 ADF PP KPPS 

Variables ADF Test Stat Prob. PP Test Stat Prob KPSS Test Stat. Prob. 

ABEOKUTA -2.943 0.221 -0.3913 0.000 -3.837 0.000 

IJEBU ODE  0.6411 0.128 0.0013 0.292 -2.179 0.000 

Note * indicate significance at 𝛼 = 0.05 in first difference. Moreover, from Table 4 above, KPSS confirmed the 

stationarity of the annual data series.   
 

 

                                    
Figure 1. ABEOKUTA Ave. Annual Temp                  Figure 2.  IJEBU ODE Ave. Annual Temp.                            
 

Figure 1 and 2, express the seasonality of 

the average annual temperature data for 

Abeokuta and Ijebu Ode respectively. Fig 3 

and 4 below presents the correlogram plot of 

the Abeokuta and Ijebu Ode average annual 

temperature series at first difference. 

 

                       
Figure 3. corellogram of ABEOKUTA series        Figure 4. corellogram of IJEBU ODE series 
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Seasonal ARIMA Model Result 

 
Table 5. Seasonal ARIMA Model 

Model/CIT ABEOKUTA IJEBU ODE 

Model (p,d,q)(P,D,Q)s AIC SIC (p,d,q)(P,D,Q)s AIC SIC 

Model 1 SARIMA 

(1,1,1) (1,1,1)12 

10.005 

 

10.175 

 

SARIMA 

(1,1,1)(1,1,0)12 

7.334 7.429 

Model 2 SARIMA 

(1,1,2)(1,1,0)12 

10.108 10.216 SARIMA 

(1,1,1) (1,1,1)12 

7.218 7.305 

Model 3 SARIMA 

(2,1,1)(1,1,1)12 

10.274 10.339  7.440 7.483 

 

The correlograms help in obtaining the 

various Seasonal ARIMA fitted to the series 

presented in Table 5 above, the models with 

the lowest AIC and SIC values were selected 

as the best among the competitors. The best 

model is highlighted in bold for easier 

identification.         

 

 
Table 6.  Parameter Estimates of the Seasonal ARIMA fitted model 

 ABEOKUTA IJEBU ODE 

Par. Coeff. St Error Prob. Coeff. St Error Prob. 

𝜃1 0.1244 0.0713 0.0035 0.4935 0.3040 0.0055 

Θ1 0.3872 0.0311 0.0017 0.2118 0.0266 0.0000 

∅1 0.5215 0.0813 0.0026 0.1893 0.0164 0.0035 

Φ1 0.0328 0.0480 0.0009    

 

 

Table 6 gives the parameter estimates of the 

SARIMA fitted model of Average Annual 

Temperature of both Abeokuta and Ijebu ode 

based on the selection criteria in Table 5. 

Parameter 𝜃1  is the autoregressive parameters of 

non- seasonal components,  
Θ1 is the moving average parameters of non -

seasonal components, 
∅1 is the autoregressive parameters of seasonal 

component and  
ϕ1 is the moving average parameters of the 

seasonal. The parameter estimation engaged 

maximum likelihood method of estimations 

adopted from Box and Jenkins procedures.  

Table 7 below reports the diagnostics evaluation 

of SARIMA Models. The selected models are 

normally distributed; residuals are 

homoscedastic in nature and no serial correlation 

 
Table 7. Statistical tests of the residuals of selected SARIMA models. 

Times series SARIMA Autocorrelation Test Heteroskedacity 

Test 

Normality test 

 Model Lung Box 

Q. 

Portmanteas Breusch 

Pagan 

White Jarque Bera 

Test 

Shapiro 

Wiki 

  Prob. Prob. Prob. Prob. Prob. Prob. 

ABEOKUTA 

 AVE.TEMP SARIMA(1,1,1)(1,1,1)12 0.2289 0.326 0.3127 0.4167 0.3390 0.2415 

IJEBU ODE 

AVE. TEMP SARIMA(1,1,1)(1,1,1)12 0.156 0.2302 0.2781 0.3301 0.1903 0.2891 

𝛼  0.05 0.05 0.05 0.05 0.05 0.05 

 

Seasonal Autoregressive Fractionally Integrated Moving Average Process (SARFIMA Model) 

  
Table 8. Long Memory tests of the SARFIMA models. 

 ABEOKUTA IJEBU ODE 

HURST.E /RS 0.8622 (0.007) 0.7942 (0.000) 

Note: Hurst. E/ RS is the Hurst Exponent Rescaled 

Range.   
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The existence of long memory in the 

series is confirmed in Table 8 above through 

the Hurst exponent values obtained using the 

rescaled Range method. Table 9 presents the 

estimates of the fractional difference of the 

average annual temperature for both Abeokuta 

and Ijebu-Ode, utilizing an automatic 

initialization of the integration with Geweke 

and Porter-Hundlak log-periodogram 

regression. Table 9 provides a tabulation of the 

competitively estimated models for each series 

and their corresponding values for the 

selection criteria. The best model for each 

series is highlighted in bold print and marked 

with an asterisk 

 

 

 

 

 

 

 

 

 
Table 9. SARFIMA Model 

 

 
Table 10. Parameter Estimates of the SARFIMA fitted model of Average Annual Temperature

 ABEOKUTA IJEBU ODE 

Par. Coeff. St Error Prob. Par. Coeff. St Error Prob. 

D 0.6643 0.3791 0.0036 D 0.3762 0.0215 0.0003 

D 0.8531 0.5316 0.0246 D 0.5121 0.4140 0.0066 

𝜃1 0.0163 0.2526 0.0000 𝜃1 0.3273 0.1766 0.0271 

Θ1 0.2642 0.4291 0.0000 𝜃2 0.6542 0.2854 0.0032 

∅1 0.2854 0.4442 0.0134 Θ1 0.3874 0.3003 0.0105 

∅2 0.0698 0.5616 0.0022 Θ2 0.8353 0.6286 0.0054 

ϕ1 -0.1715 0.6727 0.0000 ϕ1 0.5729 0.1935 0.0000 

 

Table 10  gives the parameter estimates of 

the SARFIMA fitted model of Average 

Annual Temperature of both Abeokuta and 

Ijebu ode based on the selection criteria in 

Table 8. Parameter 𝜃1 , 𝜃2are the 

autoregressive parameters of non- seasonal 

components, Θ1, Θ2 are the moving average 

parameters of  

 

 

non -seasonal components, 
∅1, ∅2 are the autoregressive parameters of 

 seasonal component and  
ϕ1 is the moving average parameters of the 

seasonal, d and D represents the fractional 

difference of non-seasonal and seasonal 

components respectively 

 

.

 

 

 

 

 

 

 

 

Model/

CTY 

ABEOKUTA IJEBUODE 

Model (p,d,q)(P,D,Q)s D D AIC BIC (p,d,q)(P,D,Q) D D AIC SIC 

Model 

1 

SARFIMA  

(1,d,1)(1,D,0)12 

0.2246 0.1945 10.044 10.520 SARFIMA 

(2,d,1)(1,D,1)1 

0.642 -0.12 5.569 5.802 

Model 

2 

SARFIMA 

(2,d,1)(1,D,1)12 

0.4689 -0.5632 12.569 12.731 SARFIMA 

(2,d,2)(0,D,1)1 

0.376 0.512 5.137 5.297* 

Model 

3 

SARFIMA 

(1,d,1)(2,D,1)12 

0.6643 0.8531 9.729* 9.918* SARFIMA  

(1,d,0)(1,D,1)1 

-

0.064 

0.332 6.149 6.382 

Model 

4 

SARFIMA  

(0,d,1)(1,D,0)12 

0.4832 0.3521 11.229 11.416 SARFIMA  

(2,d,1)(0,D,1)1 

0.558 -

0.642 

7.337 7.404 
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Diagnostics checks of SARFIMA Models 

  
Table 11.  Statistical tests of the residuals of selected SARFIMA models. 

Times series SARFIMA(p,fd,q) Autocorrelation 

Test 

Heteroskedacity 

Test 

Normality test 

 Model Lung 

Box 𝑸 

Portman

teau 

Breusch 

Pagan 

White Jarque Bera 

Test 

Shapiro 

Wiki 

  p- value p- value p-value p. 

value 

p-value p-value 

ABEOKUTA 

 AVE.TEMP SARFIMA (1,d,1)(2,D,1)12 0.2173 0.1281 0.2804 0.3912 0.4193 0.2201 

IJEBU ODE 

AVE. TEMP SARFIMA (2,d,2)(0,D,1)12 0.3392 0.2912 0.3914 0.3105 0.4413 0.5014 

𝛼  0.05 0.05 0.05 0.05 0.05 0.05 

 

Table 11 displays the results of evaluating 

autocorrelation, heteroskedasticity, and 

normality for each selected SARFIMA model. 

The normality tests indicate that the residuals 

generated from the chosen SARFIMA models 

exhibit a normal distribution. Both the Ljung- 

 

Box and Portmanteau values for all variables 

exceed the significance level, indicating no 

autocorrelation among the forecast error 

residuals of the models. Furthermore, the 

residuals demonstrate homoscedasticity. 

 

 
Table 12.  Evaluation of selected SARIMA and SARFIMA Models forecast Accuracy

 ABEOKUTA IJEBU ODE 

 RMSE MAPE MAE R2 RMSE MAPE MAE R2 

SARIMA 0.3413 0.0196 0.3422 0.8240 0.3641 0.0378 0.4682 0.8935 

SARFIMA 0.2947 0.0044 0.2256 0.9062 0.3018 0.0019 0.3978 0.9316 

 

Table 12 displays the forecast accuracy 

measures for the selected SARIMA and 

SARFIMA models for the city under study. A 

comparison of SARIMA and SARFIMA 

modelling results in Table 12 indicates that the 

SARFIMA model is more suitable for 

modelling the average annual temperature of 

Ogun State. The low values of the unbiased  

 

statistic MAPE for SARFIMA models in 

Table 12 demonstrate the effectiveness of the 

selected SARFIMA models in accurately 

predicting the temperature of Ogun State. 

Additionally, the overall error measures 

provide evidence of better forecasting 

performance with SARFIMA models 

 

 

SARFIMA model Forecast 

 Forecast values for average annual 

Temperature of Abeokuta and Ijebu Ode series  

for the year 2019 to 2028 were presented in 

Table 13 and 14 with their lower and upper 

limits respectively employing derived 

SARFIMA  model for the variables. 

 
Table 13.  Average Annual Temperature of Abeokuta Out of Sample Forecast using SARFIMA    

YEAR 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 

FORECAST 

VALUES 

433.8 426.15 438.19 435.8 432.48 415.14 407.2 347.2 344.2 

 

347.96 

Lower Limits 412.6 402.34 428.45 397.7 407.26 423.50 389.1 316.1 315.2 300.20 

Upper limits 459.6 461.94 484.15 498.9 519.37 470.20 469.3 477.3 492.5 480.64 

              

Table 14.  Average Annual Temperature of Ijebu ode Out of Sample Forecast SARFIMA   

YEAR 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 

FORECAST 

VALUES 

311.5 326.37 308.81 321.78 346.18 377.85 383.77 418.66 496.65 484.29 

Lower Limits 294.1 310.63 276.35 307.54 238.51 343.74 224.48 367.10 313.91 308.93. 

Upper limits 346.8 374.71 379.40 373.31 421.75 532.20 488.06 496.84 545.70 526.44 
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CONCLUSION  

This study analyzed and modeled the 

annual average temperature of Ogun State, 

Nigeria, focusing on Abeokuta and Ijebu Ode 

City as case studies, employing both seasonal 

autoregressive integrated moving average 

(SARIMA) and seasonal autoregressive 

fractional integrated moving average 

(SARFIMA) processes. The methodology 

outlined the SARIMA and SARFIMA models, 

integrating the seasonality of the series. Based 

on forecast evaluation measures, SARFIMA 

models demonstrated superior predictive 

abilities compared to SARIMA for all series. 

Model appropriateness was confirmed through 

the normal distribution of residuals and the 

absence of error autocorrelation. Forecasts 

were made for a ten-year period, and the 

forecasted values remained within confidence 

limits. Results of out-of-sample forecasts from 

2019 to 2028 indicate a steady rise in 

temperature, particularly pronounced in the 

Ijebu Ode axis compared to the Abeokuta 

region in Ogun State, Nigeria. This 

temperature increase suggests ongoing climate 

change, potentially impacting the livelihoods 

and economic sectors of Ijebu Ode and its 

surroundings if there is no adequate 

preparation.

. 
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