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ABSTRACT  

Recently, there has been some interest in the development of a homomorphic privacy-preserving 

classification method for neuroimages based on the residue number system (RNS) and deep CNN. This 

paper describes the RNS homomorphic encryption system for neuroimages and analyses its security 

efficiency in relation to the moduli set {2𝑛 − 1,2𝑛, 2𝑛+1 − 1}. The proposed system's security efficiency 

is evaluated using the histogram, key space, key sensitivity, and correlation analysis. The analysis results 

show that the proposed RNS homomorphic scheme is a fully homomorphic encryption (FHE) scheme 

capable of encrypting and decrypting neuroimages without sacrificing any inherent neural-biomarker 

features. The results also show that the scheme is resistant to statistical attacks like histogram, brute-

force, correlation coefficient, and key sensitivity. Therefore, the proposed RNS-FHE scheme can be 

applied to any type of neuroimaging dataset and is suitable for the design of homomorphic privacy-

preserving methods compared to the best-known state-of-the-art.  

Keywords: Neuroimages; Residue number system; Homomorphic encryption; Neural-biomarkers; 

Cipher-images; Privacy-preservation.  

 

INTRODUCTION  

Due to inherent neural-biomarker features that can be visualized and analyzed to reveal anatomical 

variations of the brain components, neuroimaging datasets (e.g., MRI scans) can serve as a source of 

diagnostic information for some critical brain-related neurological conditions and learning disabilities 

such as dyslexia, autism, and attention deficit hyperactivity (ADHD) (Lundervold & Lundervold, 2019; 

Płoński et al., 2017). In other words, the underlying neural-biomarkers features of these images could 

be used to differentiate between normal and abnormal cases in terms of structure, function, and 

activation patterns of brain tissue components (Shen et al., 2017; Usman & Muniyandi, 2020b), which 

have been shown to be sensitive as a result of recent increases in neuroimage data generation and cloud 

deployment of advanced machine learning (ML)/deep learning (DL) models as a service, and thus their 

privacy and confidentiality must be protected (Usman et al., 2021). This concept, known as privacy 

preserving classification, paved the way for remote image classification and aided in the faster 

dissemination of medical decisions (Alex et al., 2022; Boulemtafes et al., 2020; Kwabena et al., 2019; 

Usman et al., 2022).   

Existing algorithms for securing medical images along transmission channels, such as chaotic map, 

Arnold's cat map, hybrid chaotic magic transform (HCMT), linear congruential generator (LCG), and 

Lanczo's algorithms (Gatta & Al-Latief, 2018; Koppu & Viswanatham, 2017), do not consider 

cloudbased classifications because most of them have distorted the pixels' locations of important 

features in the key region of interest (ROI), necessitating accurate and reliable results. To address the 

challenges posed by these algorithms, two types of privacy-preserving methods have been used 

alongside ML and DL, namely perceptual encryption (Chuman et al., 2019; Maekawa et al., 2018) and 

homomorphic encryption (Al Badawi et al., 2021; Dowlin et al., 2016). The former employs a block-

based encryptthen-compress scheme to conceal image visual information and is compatible with certain 

traditional ML models such as ANN, SVM, decision trees, and so on, whereas the latter allows bitwise 

arbitrary homomorphic computations on cipher-images and is compatible with recent deep CNN 

architectures (Sirichotedumrong et al., 2019; Song et al., 2019). The residue number system (RNS) is 

an unweighted modular arithmetic 'carry-free' number system. Its parallelism, fault-tolerance, and fully 
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homomorphic properties have been used in a variety of digital signal processing (DSP) and 

cryptographic applications (Alhassan & Gbolagade, 2013; Muhammed et al., 2021; Navin et al., 2011; 

Usman et al., 2018). This paper focuses on the security model and analysis of cipher-neuroimages 

produced by (Usman et al., 2022)’s RNS-FHE scheme. The neuroimage encryption and decryption 

algorithms are proposed specifically with respect to the moduli set {2𝑛 − 1, 2𝑛,2𝑛+1 − 1} proposed by 

(Usman et al., 2022). This paper also shows that the proposed scheme can conceal and recover plain 

neuroimages without sacrificing any inherent neural-biomarker features.   

The primary contribution of this paper is the development of novel encryption and decryption algorithms 

that are suitable for neuroimaging datasets. Additionally, this study demonstrates the security benefits 

of a methodical RNS-FHE scheme for designing an effective and efficient privacy preserving 

framework for these types of datasets.  

Background  

A. Homomorphic Encryption  

Homomorphic encryption (HE) aims to allow certain arbitrary computations to be performed on 

ciphertext to produce an encrypted result that is also in cipher form. This result should be the same as 

the result of performing the same arbitrary computation on the plaintext (Gomathisankaran et al., 2013; 

Prasanthi & Smitha, 2017). To protect confidential data, HE schemes have a wide range of applications 

in medicine, education, and finance. A very simple illustration of the HE concept is a user requesting 

the server to add two integers, such as 5 and 12, as shown in Fig. 1. Assume that the two integers are 

encrypted as polynomial functions P1(x) and P2(x), respectively. The sum was computed by the cloud 

server as the third polynomial function P3(x) = P1(x) + P2(x), which the user decrypted to integer 17.  

Due to its multiplicative property, RSA is regarded as the first HE used in the domain of cloud 

computing security since 1978. To ensure security, RSA employs a message padding process with 

random bits; however, the process results in the loss of homomorphic property. To counteract this 

process, several HE schemes based on public key cryptosystems were proposed (Bos et al., 2013; 

Gentry, 2010; Gentry & Halevi, 2011). Gentry (Gentry, 2009) presented the first FHE scheme design. 

Gentry's original scheme was inefficient, but subsequent studies produced significantly more practical 

schemes, leading to the classification of FHE schemes into three generations (Muhammed et al., 2021): 

The first generation of FHE is based on ideal lattices; the second and third generations are based on 

learning with error (LWE) and ring learning with error (RLWE) e.g., Gentry, Sahai, and Waters (GSW) 

scheme. However, in order to be useful in real-world applications, each of these FHE scheme generation 

needs to be improved further. The ability of a scheme to perform an infinite depth of arbitrary 

computations on encrypted data is referred to as FHE. To build FHE, however, a function of Boolean 

circuit must be designed with the capacity of performing infinite depths of arbitrary additions and 

multiplications, such that an untrusted cloud server can compute function Enc(x+y) and Enc(x×y) from 

Enc(x) and Enc(y) with zero knowledge of x, y and key k, satisfying the additive and multiplicative 

properties given in Equations (1) and (2):  

Additive property:  

  𝐸𝑛𝑐𝑘(𝑥) + 𝐸𝑛𝑐𝑘(𝑦)𝑀𝑜𝑑 𝑁 = 𝐸𝑛𝑐𝑘(𝑥 + 𝑦, 𝑀𝑜𝑑 𝑁)        (1)  

Multiplicative property:  

  𝐸𝑛𝑐𝑘(𝑥) × 𝐸𝑛𝑐𝑘(𝑦) = 𝐸𝑛𝑐𝑘(𝑥 × 𝑦, 𝑀𝑜𝑑 𝑁)          (2)  

where 𝑥, 𝑦 ∈ ℤ𝑁 are plaintexts, Enc is the encryption function and k is the key generation function.  
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Fig. 1. Traditional homomorphic encryption cycle, pk-public key, sk-secret key.  

B.  Residue Number System and RNS-FHE Scheme  

The RNS is an unweighted number system that performs arithmetic computations in a secure, fast, 

parallel, fault-tolerant, and carry-free manner by replacing an integer number with its residues with 

respect to the given moduli set, thereby simplifying, speeding up, and allowing computations to run 

concurrently. RNS, in general, provides incredibly fast computer arithmetic due to inherent properties 

such as parallelism, modularity, non-critical failure adaptation, and carry-free operations (Abdulmumin 

& Gbolagade, 2017; Navin et al., 2011; Usman & Muniyandi, 2020a).  

RNS is formalized as an n-tuple of pairwise relatively-prime moduli. If mi denotes the moduli set, then  

𝑚𝑖 = {𝑚1,𝑚2, … , 𝑚𝑛},𝐺𝐶𝐷(𝑚𝑖, 𝑚𝑗) = 1 𝑓𝑜𝑟 𝑖  𝑗, where GCD stands for greatest common divisor. 

Equation (3) defines this system's dynamic range M as:  

      𝑀 𝑛𝑖  𝑚𝑖               (3)  

𝑅𝑁𝑆 
Any integer number 𝑋 𝑀 can be replaced by its residue in the RNS as 𝑋 →  (𝑥1,𝑥2,… , 𝑥𝑛) using 

Equation (4) below:  

      𝑥𝑖 = 𝑋 𝑚𝑜𝑑 𝑚𝑖 = |𝑋|𝑚𝑖            (4)  

where 𝑥𝑖,𝑖=1,2,…,𝑛 are residues, mi is a module, and M represents system dynamic range which must be 

sufficiently large enough. The ring ℤ𝑀 ranges from [0, M) called the legitimate range of X. If X and Y 

are two integer numbers bounded by the ring ℤ𝑀 in RNS, then, Equation (5) can be used to compute the 

arbitrary homomorphic operation that maps their respective residues, implying that the RNS scheme is 

FHE.  

𝑅𝑁𝑆 

 𝑋 𝑌 ⇔ 𝑦 , … , 𝑥𝑛     (5)  

In the RNS cryptosystem, a binary-to-residue (BR) converter circuit is required to encode 8-bit grayscale 

values of pixels to their residues, while a residue-to-binary (RB) converter circuit is required as a reverse 

converter to obtain the original pixel values. Chinese remainder theorem (CRT) and mixedradix 

conversion (MRC) algorithms are the two reverse converter methods in RNS. Because of the 

computational overhead that characterized large modulo-M of CRT, this study adopted MRC, which is 

defined as follows (Abdul-mumin & Gbolagade, 2017): The integer equivalent of X can be computed 

from its residues , … , 𝑥𝑛) using MRC with respect to a set of pairwise relatively-prime moduli 

{𝑚1,𝑚2,… , 𝑚𝑛} as:  

 𝑋  𝑎𝑛𝑚1𝑚2𝑚3 … 𝑚𝑛−1,      (6)   

where 𝑎𝑖=1,..,𝑛, are the MRDs, which can be computed as follows:  
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    𝑎1 = 𝑥1,  

    𝑎2 = |(𝑥2 − 𝑎1)|𝑚1−1|𝑚2|𝑚2,  

    𝑎3 = |((𝑥3 − 𝑎1)|𝑚1−1|𝑚3 − 𝑎2)|𝑚3,  

      ⋮  

    𝑎𝑛 = |(… ((𝑥𝑛 − 𝑎1)|𝑚1−1|𝑚𝑛 − 𝑎2) |𝑚𝑛−−11|𝑚𝑛 − ⋯ − 𝑎𝑛−1)|𝑚𝑛−−11|𝑚𝑛| ,(7)  

𝑚𝑛 

Proposed Method  

According to (Usman et al., 2022)’s conceptual model of RNS-FHE privacy-preserving scheme, the 

RNS-FHE scheme encrypts neuroimages (Ii) by combining a secret key k chosen from a set of keys (Ki) 

with random noise (rmi) and a large N-prime number (Ni) with respect to moduli set 𝑚𝑖 = {2𝑛 − 1, 2𝑛,2𝑛+1 

− 1} to generate cipher-images (Ci), where i = 1,2,...,n. The encryption process begins with the 

decomposition of the neuroimage into its pixels (Xi), each of which has an 8-bit grayscale value in the 

range [0, 255]. Each Xi is then converted to cipher-pixel (xi) based on RNS-FHE parameters with respect 

to mi, which are then concatenated to form Ci, where n≥3 is the pk used by the RNS bitstream encoder 

during the encryption process. The decryption block employs the MRC as a reverse algorithm to 

generate a Ni-form of Ci from the encrypted results using residues xi and mi. Finally, the user will retrieve 

Ii from Ci using the generated k. Fig.2 depicts the flow of neuroimage encryption and decryption process 

summarized in Table 1 below:  

 i.  Pixel decomposition:  

    𝐼𝑖 ← 𝑋1𝑋2 … 𝑋𝑛 𝑤ℎ𝑒𝑟𝑒 𝑋𝑖 𝑖𝑠 𝑡ℎ𝑒 𝑝𝑖𝑥𝑒𝑙 𝑜𝑓 𝑛𝑒𝑢𝑟𝑜𝑖𝑚𝑎𝑔𝑒 𝐼𝑖      (8)  

    𝑋𝑖 ← 𝑥3𝑛𝑥3𝑛−1𝑥3𝑛−2 … 𝑥1𝑥0 𝑓𝑜𝑟 ∀𝑥𝑖 ∈ {0,1} 𝑤ℎ𝑒𝑟𝑒 𝑥𝑖 𝑖𝑠 𝑎 𝑏𝑖𝑡   

  Encryption Process:  

  𝑐𝑖 ← 𝐸𝑛𝑐𝐾(𝑋𝑖) = |{𝑋1,𝑋2,… , 𝑋𝑛} ⊕ {𝑘1,𝑘2,… , 𝑘𝑛} ∗ {𝑁1, 𝑁2, … , 𝑁𝑛}|{𝑚1,𝑚2,…,𝑚𝑛}(9)  

  𝐶𝑖 ← 𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒(𝑐𝑖) = 𝑥1𝑥2 … 𝑥𝑛              (10) ii. 
 Decryption process:  

  𝐼𝑖 ← 𝐷𝑒𝑐𝐾(𝐶𝑖,𝑚𝑖) = 𝑀𝑅𝐶(𝐶𝑖) ⊕ {𝑘1,𝑘2,… , 𝑘𝑛}𝑀𝑜𝑑 𝑚𝑖        (11)  

 𝑁𝑖 ∗ 𝐶𝑖 ← 𝑀𝑅𝐶(𝐶𝑖 = {𝑥1,𝑥2,… , 𝑥𝑛})𝑀𝑜𝑑{𝑚1,𝑚2,… , 𝑚𝑛}        (12)  
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Fig. 2. The flow of RNS-FHE cryptosystem.  

Table 1. The homomorphic encryption and decryption algorithms for neuroimages.  

Algorithm 1: The Encryption Algorithm  Algorithm 2: The Decryption Algorithm  

The algorithm for the encryption process is as 

follows:  

1) Input n, k, p, rm N and plain neuroimage  

I  

2) Obtain the values of m1, m2, m3 using  

{2𝑛 − 1, 2𝑛,2𝑛+1 − 1}  

3) Decompose I into Xi using Equation (8) 

4) For i = 1 to p  

Encode Xi into the cipher-pixel ci 

using Equations (9)  

Concatenate ci to obtain 

cipherimage C using Equation (10) 5) Save 

C  

The algorithm for the decryption process is as 

follows:  

1) Input n, k, p, rm, N and cipher-image C  

2) Obtain the values of m1, m2, m3 using  

{2𝑛 − 1, 2𝑛,2𝑛+1 − 1}  

3) Obtain  N-prime  inverse  C 

 and  

decompose into ci  

4) For i = p down to 1   

Extract xi from ci Mod mi  

 Obtain  Xi  from  xi  using  

Equations (6) and (7)  

5) Recover the neuroimage I by using 

Equations (11) and (12) 6) Save I  

  

Experimental Results and Discussion  

The results of the RNS-FHE scheme performance analysis are summarized in this section. The 

simulations were run on a GPU system equipped with a 2.70GHz processor, 8.0GB RAM, and a 4 

Core(s) Intel (R) processor. Grayscale neuroimages (Test1, Test2, Test3, Test4) of varying sizes were 

used to evaluate the efficiency of the proposed scheme. The proposed scheme was evaluated using visual 

inspection, encoding analysis, and security analysis.  

A. Visual Inspection Analysis  

Fig. 3 depicts a visual comparison of a few selected neuroimages and their corresponding cipher forms. 

The results indicate that there is no similarity between the image pairs. The visual inspection analysis 

also reveals similarities in the histograms of plain and cipher neuroimages, indicating that the RNSFHE 

scheme recovers the neuroimages completely during the decryption process.  

  

 

Fig. 3. Visual comparison of plain neuroimage and their cipher form (n=3, k=2, p=15)  

B. Encoding Analysis  
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Table 2 compares the size of plain neuroimages and their cipher forms. When n = 3, mi = {7, 8, 15}, the 

pixel encoding component of the encryption process reduces the size of the cipher-images. Therefore, 

the computational time required for homomorphic operations is reduced, as is the disc space usage. On 

average, the proposed scheme reduced the size of cipher-images by 62%.  

Table 2. Comparison of disc sizes between plain and cipher neuroimages  

Label (dimension)  Size (disk space usage)  

Plain form 

(kb)  

Cipher form 

(kb)  

Reduction ratio 

(%)  

Test1 (256×256)  407  146  62.13  

Test2 (512×512)  380  107  71.84  

Test3 (393×400)  216  89.7  58.47  

Test4 (275×301)  163  72.6  55.46  

  

C. Security Analysis  

A security analysis was performed to evaluate the proposed RNS-FHE scheme's effectiveness against 

some common image attacks such as histogram, key space, key sensitivity, and correlation coefficient. 

The experimental results demonstrated that the scheme is extremely secure against such attacks. As 

illustrated in Fig. 4, the histograms of test neuroimages differ completely from those of their 

corresponding cipher forms. This figure shows that the histogram of the cipher-image provides no 

information about the plain neuroimage. This implies that the scheme is resistant to statistical attacks.  

  

 
  

Fig. 4. Comparison of histograms: left column is plain form, right column is cipher form  

For cryptosystems with a sufficiently large key space, a brute-force attack is computationally 

impossible. The proposed scheme makes use of three encryption keys (n,k,p). When n = {3,4,5,8,11}, 

the FPGA simulation of the scheme achieved an efficient pixel encoding with a time complexity of 

O(n3) (Usman et al., 2022; Usman & Muniyandi, 2020b). But, since 𝑘 ∈ ℤ  and p = 1,2,3,..., there is a 

wide range of options. Assume we use a 128-bit key for k and p, as in DES. This gives us a total of 24 

× 2128 × 2128 ≅ 1.8527𝑒 + 78 combination of options. If an adversary uses a 1000 MIPS computer to 

guess the combination, he or she will need 24×62128×2128 > 1000 years. This time 

is long  

1000×10 ×3600×24×356 enough 

to resist brute-force attack.  
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The sensitivity to cipher key is another important feature of a good cryptosystem. A small change in the 

key value should result in a significant change in either the plain or cipher-image. When the value of 

one of the parameters is changed, the decrypted version of Test1 neuroimage (Fig. 3) is shown in Fig. 

5. Therefore, the proposed scheme is extremely sensitive to the secrete keys.  

 

Fig. 5. Key sensitivity analysis (a) Decrypted Test1 with k=-3 (b) Decrypted Test1 with p=12 (c) 

Decrypted Test1 with n=5.  

Finally, a good image-based cryptosystem should be able to generate cipher-images with significantly 

low correlation coefficient values. This enables the system to properly conceal the image's visual 

identity. For the correlation analysis, 500 adjacent pixels (vertical, horizontal, and diagonal) of the Test2 

neuroimage and its corresponding cipher-image were chosen at random. Equation (13) was used to 

perform the computation:  

      𝑟 = 𝐶𝑜𝑣(𝑥,𝑦)             (13)  
√𝐼𝑝(𝑥)∗𝐼𝑐(𝑦) 

where x is a plain image pixel and y is an adjacent cipher-image pixel, and Ip and Ic are functions with 

the condition that 𝑟 = −1 ≤ 𝑟 ≤ 1 and 𝑟2 ≤ 1. Table 3 demonstrates that the cipher-images have low 

correlation coefficient values between pairs adjacent pixels.  

Table 3. Results of correlation analysis  

Iteration   Adjacent pixels   

p  Vertical  Horizontal  Diagonal  

1  0.02931271  0.00382114  0.02571660  

2  -0.00317026  0.03184451  0.01788132  

3  -0.02462755  0.00111348  0.01973822  

7  0.00887553  -0.02502754  -0.02490016  

12  0.01659221  0.00114103  0.03442093  

15  -0.02411439  -0.01222003  0.03510737  

17  0.01659177  0.03312468  0.01222013  

Conclusion  

This paper presents the security model and analysis of cipher-neuroimages generated by the RNS-FHE 

scheme, which was used in (Usman et al., 2022) to model homomorphic HoRNS-CNN for 

privacypreserving classification task. The neuroimage encryption and decryption algorithms are based 

on the powerful encoding/decoding strengths of RNS pixel bitstream encoder/decoder with respect to 

the moduli set {2𝑛 − 1, 2𝑛,2𝑛+1 − 1}. The proposed scheme can conceal and recover plain neuroimages 

without sacrificing inherent neural-biomarker features. The experimental results show that fewer bits 

are required to represent the cipher-pixels. The results also show that the proposed RNS-FHE scheme 

is resistant to statistical attacks and highly sensitive to slight changes in the cipher keys, outperforming 

the state-of-the-art equivalent proposed by (Sirichotedumrong et al., 2019).  
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