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ABSTRACT 

In this study, the flow of Magnetohydrodynamic (MHD) Carreau fluid down an inclined plane with 

viscous and magnetic dissipation and no slip boundary conditions was analyzed. The derived non-linear 

ordinary differential equation was solved analytically using perturbation method with MAPLE 

software. For no slip boundary case, the effects of some physical dimensionless parameters such as 

Magnetic field (M), Gravitational force (G), and Brinkmann number (Br) on both the velocity and 

temperature on the flow of the fluid were analyzed through the tables and graphs. The result shows that 

as Magnetic parameter increases, the velocity and temperature distribution decreases and increases as 

the gravitational parameter and the Brinkmann number increases with no effect on the velocity profile. 

For future work, Carreau and Carreau-Yasuda model can be compared using the same set of parameters. 

Keywords: Carreau fluid, magnetohydrodynamic flow, viscous and magnetic dissipation, No slip 

boundary condition, MAPLE software, Newtonian and Non-Newtonian fluids. 

 

INTRODUCTION  

Liquids and gases are referred to as fluids as they flow and changes state easily due to external forces. 

The mechanics behind their movement is known as fluid flow. Many researchers such as Labadin and 

Ahmadi (2006), Lawal et al (2020) have worked on the influence of physical parameters on the 

movement of fluids through the blood vessels. Effect of mass transfer on MHD oscillatory flow for 

Carreau fluid which is a generalized Newtonian fluid was studied by Alkafajy and Dheia (2019), an 

increase in fluid movement due to the rise in temperature was observed (Tanveer et al, 2019). Also, 

stability analysis was carried out by Yahaya et al (2019) on MHD Carreau fluid flow over a permeable 

shrinking sheet with thermal radiation. Rooman et al (2022) investigated the Mathematical modelling 

of Carreau fluid flow in a renal tubule with heat transfer characteristics. The flow of power law Non-

Newtonian fluid down an inclined plane considering the velocity profile using continuity and motion 

equations was studied by Bognar et al (2012), the effect of physical parameters were shown through 

the graphs. Tshela (2013) have studied the effect of temperature dependent variable viscosity on fluid 

flow down an inclined plane with a free surface. 

Lawal et al (2020) have investigated the effects of variable viscosity on fluid flow over a convective 

surface. In this study, a fluid with zero velocity relative to the boundary, that is, with no slip boundary 

condition such as the study of Aiyesimi et al (2013). 

In this work, the MHD flow of a Carreau fluid down an inclined plane with viscous and magnetic 

dissipation and no slip effect was examined. The effects of each of the physical parameters were 

analyzed. The governing equations were solved analytically using perturbation method (Mitga and 

Alkhafajy, 2019; Idrees et al, 2018). 

 

MATHEMATICAL FORMULATION 

We consider the flow of an incompressible non-Newtonian Carreau fluid which is assumed to be 

uniform and steady and moving down on an inclined plane under the influence of magnetic field. Fluids 

are supposed to have very small electromagnetic power with a negligible electrical conductivity. 
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Thinking of the system of Cartesian coordinates, the velocity vector is given as  (𝑢(𝑦), 0, 0) where 𝑢 is 

the x-component of velocity and 𝑦 is orthogonal to the 𝑥-axis 

The momentum and energy equations governing the flow of the Carreau fluid are: 

𝜕𝜏

𝜕𝑦
− 𝜎𝐵0

2𝑢 + 𝜌𝑔 sin ∅ = 0        

 (1) 

with boundary conditions 

𝑢 = 0 at 𝑦 = 0 and  
𝜕𝑢

𝜕𝑦
= 0 at 𝑦 = ℎ       

 (2) 

𝑘
𝜕2𝜃

𝜕𝑦2 + 𝜏
𝜕𝑢

𝜕𝑦
+ 𝜎𝐵0

2𝑢2 = 0                         

(3) 

with boundary conditions 

             𝜃 = 𝜃0 at 𝑦 = 0 and   𝜃 = 𝜃1 at 𝑦 = ℎ       (4) 

where 𝑢 is the axial velocity, 𝜃 is a fluid temperature, 𝐵0 is a magnetic field strength, 𝜌 is a fluid density, 

𝜎 is a conductivity of the fluid, 𝑔 is acceleration due to gravity and ∅ is an angle of inclination of the 

plane 

The constitutive equation for Carreau-Yasuda fluid is given as: 

𝜏 = 𝜇(𝛾̇)𝛾̇ = 𝜇∞ + (𝜇0 − 𝜇∞)[1 + (Γ𝛾̇)𝑎]
𝑛−1

2       (5)    

where 𝜏 is  shear stress and 𝛾̇ is the shear rate respectively, 𝜇0 and 𝜇∞ are the zero shear rate viscosity 

and the infinite shear rate viscosity, 𝑛 is the power-law exponent and 𝑎 is the Yasuda parameter model 

which when it is equal to 2, it makes it a Carreau parameter. “𝑎” indicate the transition region between 

the zero-shear rate region and the power law region. Parameters 𝑎 and 𝑛 which are dimensionless 

determines the flow behavior of the non-Newtonian fluid with 𝜇0 and 𝜇∞. 

Γ is a material time constant and; 

 𝛾̇ = √
1

2

∑
𝑖

∑
𝑗

𝛾̅̇𝑖𝑗 𝛾̅̇𝑗𝑖 = √
1

2
𝜋        

 (6) 

where 𝜋 is the second invariant strain tensor. For 𝑛 < 1, the fluid is characterized as shear thinning 

fluid, shear thickening for 𝑛 > 1 and Newtonian when 𝑛 = 1.  

Substituting equation (5) into equation (1) and (3) yield 

𝜇0
𝜕2𝑢

𝜕𝑦2 +
3

2
𝜆2(𝜇0 − 𝜇∞)(𝑛 − 1) (

𝜕𝑢

𝜕𝑦
)

2 𝜕2𝑢

𝜕𝑦2 − 𝜎𝐵0
2𝑢 + 𝜌𝑔 sin ∅ = 0                

(7)     

𝑘
𝜕2𝜃

𝜕𝑦2 + 𝜇0 (
𝜕𝑢

𝜕𝑦
)

2
+ (𝜇0 − 𝜇∞)

𝑛−1

2
𝜆2 (

𝜕𝑢

𝜕𝑦
)

4
+  𝜎𝐵0

2𝑢2 = 0                

(8) 

with thermal boundary conditions (2) and (4)    

Introducing the following non-dimensionless quantities: 
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        𝑦̅ =
𝑦

ℎ
, 𝑥̅ =

𝑥

ℎ
, 𝑢̅ =

𝑢ℎ

𝜇0
, 𝑢 =

𝑢̅𝜇0

ℎ
, 𝑝 =

𝑝̅ℎ

𝜇0
, 𝑝̅ =

𝑝𝜇0

ℎ
, 𝑇̅ =

𝜃−𝜃0

𝜃0−𝜃1
 , equation (7) and (8) with 

boundary condition (2) and (4) after removing “−“ becomes    

       
𝜕2𝑢

𝜕𝑦2 +
3

2
𝑊𝑒(𝑛 − 1) (

𝜕𝑢

𝜕𝑦
)

2 𝜕2𝑢

𝜕𝑦
− 𝑀𝑢 + 𝐺 = 0      (13)

  

with boundary conditions 

     𝑢 = 0 at 𝑦 = 0 and  
𝜕𝑢

𝜕𝑦
= 0 at 𝑦 = 1       (14) 

                 
𝜕2𝑇

𝜕𝑦2 + 𝐵𝑟 [(
𝜕𝑢

𝜕𝑦
)

2
+ 𝑊𝑒 (

𝜕𝑢

𝜕𝑦
)

4
+ 𝑀𝑢2] = 0      (15) 

with boundary conditions 

             𝜃 = 0 at 𝑦 = 0 and   𝜃 = 1 at 𝑦 = 1       

 (16) 

where 𝑀 =
𝜎𝐵0

2ℎ

𝜇0
 is the Magnetic parameter,  𝐺 =

𝜌𝑔 sin ∅ ℎ

𝜇0
 is the Gravitational Parameter 𝑊𝑒 =

𝜆2(1−⟅)

ℎ3  

is the Weissenberg number and 𝐵𝑟 =
𝜇0

3

ℎ2𝐾(𝜃1−𝜃0)
 is the Brinkman number    

 

SOLUTION OF THE PROBLEM 

Using perturbation method, let’s assume the existence of small parameter 𝜀 = 𝑊𝑒 in equation (13) 

and (15). Now, we write 

𝑢(𝑦) = 𝑢0(𝑦) + 𝜀𝑢1(𝑦) + 𝑂(𝑊𝑒)2                   

(17) 

𝑇(𝑦, 𝜀) = 𝑇0(𝑦) + 𝜀𝑇1(𝑦) + 𝑂(𝑊𝑒)2       (18) 

Substituting equations (17) and (18) into equation (13) - (16) and collecting the like terms base on the 

powers of 𝜀, gives the following equations: 

Zero-order equation with boundary condition 

 
𝜕2𝑢0

𝜕𝑦2 − 𝑀𝑢0 + 𝐺 = 0         

 (19) 

  𝑢𝑜 = 0   at   𝑦 = 0 and 
𝜕𝑢0

𝜕𝑦
= 0    at   𝑦 = 1      

 (20) 

𝜕2𝜃0

𝜕𝑦2 + 𝐵𝑟 [(
𝜕𝑢0

𝜕𝑦
)

2
+ 𝑀𝑢0

2] = 0        (21)

  𝜃0 = 0 at 𝑦 = 0 and 𝜃0 = 1 at 𝑦 = 1      

  (22) 

First-order equation with boundary condition 

𝜕2𝑢1

𝜕𝑦2 +
3

2
(𝑛 − 1) (

𝜕𝑢0

𝜕𝑦
)

2 𝜕2𝑢0

𝜕𝑦2 − 𝑀𝑢1 = 0      

 (23) 

𝑢1(𝑦) = 0   at   𝑦 = 0 and 
𝜕𝑢1

𝜕𝑦
= 0    at   𝑦 = 1      (24) 
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𝜕2𝜃1

𝜕𝑦2 + 𝐵𝑟 [(
𝜕𝑢0

𝜕𝑦
)

4
+ 2

𝜕𝑢0

𝜕𝑦

𝜕𝑢1

𝜕𝑦
+ 2𝑢0𝑢1] = 0      

 (25) 

𝜃1 = 0   at   𝑦 = 0 and 𝜃1 = 0   at   𝑦 = 1      

 (26) 

Equation (19) and (21) were solved with boundary condition (20) and (22) respectively to give  

𝑢0(𝑦) = 𝑒√𝑀𝑦𝑐2 + 𝑒−√𝑀𝑦𝑐1 +
𝐺

𝑀
       

 (27) 

𝜃0(𝑦) = 𝑎7𝑦2 + 𝑐5𝑦 + 𝑎8𝑒2√𝑀𝑦 + 𝑎9𝑒−2√𝑀𝑦 + 𝑐6 − 𝑎10𝑒−√𝑀𝑦 − 𝑎11𝑒√𝑀𝑦  (28) 

Similarly, equation (23) and (25) were solved with boundary condition (24) and (26) respectively to 

yield              𝑢1(𝑦) = (𝑎1𝑒√𝑀𝑦 +
𝑎2

𝑒√𝑀𝑦
) 𝑦 + 𝑎3 (𝑒√𝑀𝑦)

3
+ (𝑎4 + 𝑐4)𝑒√𝑀𝑦 +

𝑐3+𝑎5

𝑒√𝑀𝑦
+

𝑎6

(𝑒√𝑀𝑦)
3            

(29) 

         

(31) 

where 𝑎1, 𝑎2, 𝑎3,………………,𝑎17 are constants. 

RESULTS AND DISCUSSION 

Table 1: Approximate Analytical results and Numerical results in MAPLE 20 for 𝑀 = 2 and  𝑀 = 4 

when           

               G = 2, n = 2, Br = 1 and 𝜀 = 0.001 

𝑀 = 2 𝑀 = 4 

Approximate Analytical 

Results 

Numerical Results 

using MAPLE 20 

Approximate Analytical 

Results 

Numerical Results 

using MAPLE 20 

𝑦 𝑢(𝑦) 𝜃(𝑦) 𝑢(𝑦) 𝜃(𝑦) u(y) 𝜃(𝑦) u(y) 𝜃(𝑦) 

0 0 0 0 0 0 0 0 0 

0.2 0.213452 0.260124 0.214278 0.260094 0.157132 0.239071 0.157420 0.239065 

0.4 0.364384 0.482603 0.365360 0.482621 0.259044 0.457042 0.259330 0.457055 

0.6 0.464443 0.678447 0.465364 0.678510 0.321995 0.657478 0.322227 0.657504 

0.8 0.521478 0.850806 0.522321 0.850870 0.356111 0.839072 0.356302 0.839095 

1 0.539999 0.999999 0.540811 1.000000 0.366901 1.000000 0.367079 1.000000 
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(a)                                                                  (b) 

      Figure 1: Effects of Magnetic parameter on (a) Velocity profile (b) Temperature profile 
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      (b)    

Figure 2: Effects of Gravitational parameter on (a) Velocity profile (b) Temperature profile 

 

      

 

 

 

 

 

 

 

 

 

 

Figure 3: Effects of Brinkman number on Temperature profile 

 

Table 1 shows the validity of the results obtained from perturbation method using numerical method in 

MAPLE 20. Figure 1 illustrates the effects of magnetic parameter M on the velocity and temperature 

distribution of the fluid when G = 2, n = 2, Br = 1 and 𝜀 = 0.001. it was noticed from the graphs that 

the velocity and temperature distribution decreases as M increases. The effects of increasing values of 

M is to reduce the fluid velocity and also reduce the boundary layer thickness. Then, with increase in 

the magnetic field parameter, the rate of transportation will be reduced when the fluid is flowing down 

an inclined plane. 

Figure 2 illustrates the graphical illustration of both the velocity u and temperature, 𝜃 distribution for 

various values of G. It was observed from the graph that as the gravitational parameter G increases, the 

velocity and temperature distribution increases. 
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Figure 3 shows that the temperature distribution increases as the Brinkmann number increases while 

the Brinkmann number does not have effect on the velocity distribution of the fluid.  

 

CONCLUSION 

In this study, the magnetohydrodynamic flow of a thin film fluid with viscous and magnetic dissipation 

down an inclined plane with no slip boundary conditions were examined and analyzed. Governing 

equations were derived for both momentum and temperature. The effects of some physical 

dimensionless parameters such as Magnetic field, Gravitational force and Brinkmann number on both 

the velocity and temperature were observed, computed and represented graphically. The results derived 

from analytical method were validated numerically using finite difference method and represented in a 

table. 

RECOMMENDATION 

For future work, the effects of more or other parameters on the flow of Carreau fluid can be investigated 

and Carreau and Carreau-Yasuda model can be compared using the same set of parameters. 
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