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Abstract 

We examine a single-scale model of viral hepatitis at the cellular level of biological organisation, where complete 

virions and incomplete particles are treated separately. This model enables the exploration of viral dynamics 

within infected cells, as well as the processes of subsequent cell infections and viral release from infected cells. 

At the within-cell scale of the infectious disease system, viral replication is the central process, and this has been 

thoroughly analysed both analytically and numerically in this study.  

Keywords: Within-cell scale, Individual cell infectiousness, Complete virions, Incomplete particles, Life cycle. 

 

INTRODUCTION 

Mathematical models are essential tools for 

understanding complex biological systems and 

making predictions about their behaviour. A 

single-scale model focuses on a specific level of 

biological organisation, providing a framework 

to analyse phenomena occurring at that scale. 

Developing such a model involves identifying 

key variables and parameters that define the 

system's behaviour at the chosen scale. This 

approach allows for a detailed examination of 

specific processes within the broader context of 

biological complexity. In the context of viral 

hepatitis, there are five primary viruses 

responsible for liver infections:  Hepatitis A 

Virus (HAV), Hepatitis B Virus (HBV), 

Hepatitis C Virus (HCV), Hepatitis D Virus 

(HDV) and Hepatitis E Virus (HEV). These 

viruses vary significantly in transmission 

modes and disease progression:  Hepatitis B, C, 

and D are predominantly bloodborne and have 

a high likelihood of leading to chronic 

infections while Hepatitis A and E are 

transmitted via the fecal-oral route and never 

result in chronic conditions.  

The taxonomy of these viruses, often 

organised by their transmission pathways, 

clinical features, and genetic classifications, 

serves as a critical foundation for building such 

models. The table below provides a structured 

overview of these distinctions, highlighting 

differences in their biology and epidemiology, 

which are essential for model construction and 

analysis. 
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Table 1. Taxonomy of Viral Hepatitis. Source: Blanco-Diaz et-al (2024). 

Family Subfamily Species Morphology Envelope 
DNA and RNA reverse 

transcribing virus 
 

 

 

   

Hepadnaviridae 
 

Orthohepadnavirus HBV Icosahedral with 

envelope. 

+ 

RNA virus ssRHA viruses     

Picornaviridae  Hepatovirus HAV   

Flaviviridae  Hepacivirus HCV   

Subviral agents  Deltavirus HDV Spherical + 

Hepeviridae Hepevirus HEV Icosahedral - 

 

In this study, a within-cell single-scale 

model of the hepatitis B virus (HBV) was 

developed at the cellular level of biological 

organisation. HBV, classified as a partially 

double-stranded DNA virus under the 

Baltimore classification scheme VII, utilises 

reverse transcriptase to transition through an 

RNA intermediate. The covalently closed 

circular DNA (cccDNA) serves as the 

transcriptional template for all HBV transcripts. 

To complete its life cycle, the HBV genome 

must be transported to the nucleus, as 

highlighted in Ortega-Prieto et-al (2018). The 

structure of the paper is as follows. Section 2 

presents the development of a mathematical 

model describing the life cycle of HBV 

infection. Section 3 provides the mathematical 

analysis of the proposed model. Section 4 

includes the numerical simulation results. 

Section 5 concludes the study by summarizing 

the findings. 

 

FORMULATION OF MODEL

In this study, we developed a within-cell 

single-scale model of hepatitis B virus (HBV) 

dynamics, focusing on five interacting 

populations: core particle in cytoplasm  hr, 
cccDNA inside the nucleus ht, complete virions 

hc, incomplete particles h𝑖 and within-cell viral 

load Vs. We propose a simplified version of the 

more complex within-cell scale model 

described in Nakabayashi (2016). We 

employed a system of ordinary differential 

equations (ODEs) to model the transitions 

between different states of the hepatitis B virus 

(HBV) within an infected cell, utilising the law 

of mass action to describe these interactions.  

The following assumptions were made 

regarding the within-cell processes: 

i. no superinfection that is each cell is 

infected by a single virion, preventing 

multiple infections within the same 

cell, 

ii. only capsids containing mature 

relaxed circular DNA (rcDNA) are 

either secreted from the cell or 

recycled back to the nucleus to 

replenish the covalently closed 

circular DNA (cccDNA) pool, 

iii. the intracellular replication dynamics 

of the core particle are captured 

through the reverse transcription of the 

initial value in the cytoplasm, denoted 

as hC = hc(0), 
iv. the influence of the within-cell viral 

load on assembly and export, as well 

as individual cell infectiousness, 

represented by Vs = Vs(t), 
v. the within-cell processes occur on a 

fast time scale, denoted by s, so that 

hr = hr(t), ht = ht(t),      hc =
 hc(t),  hi = hi(t) and Vs = Vs(t). 
These assumptions aim to simplify the 

complex intracellular dynamics of 

HBV replication, allowing for a more 

tractable mathematical analysis. Our 

model is given by: 
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dhr(t)

dt
=  Λr − ηrhr(t)Vs(t) − δrhr(t), 

           
dht(t)

dt
=  ηrhr(t)Vs(t) − (αt + μt + δt)ht(t), 

                                         
dhc(t)

dt
=  αtht(t) − (αc + ρc)hc(t)                                        (2.1) 

dhi(t)

dt
=  μtht(t) − (αi + δi)hi(t), 

                      
dVs(t)

dt
=  Ncαchc(t) + Niαihi(t) − (rc + ri)Vs(t), 

Equation (1) is the dynamics of core 

particle internalisation and DNA repair. This 

equation models the change in the 

concentration of core particles in the cytoplasm 

hr over time. Λr represents the production rate 

of mature rcDNA-containing core particles in 

the cytoplasm,  ηr denotes the rate at which 

rcDNA-containing core particles are 

transported into the nucleus and converted into 

cccDNA and degradation rate δr accounts for 

the natural degradation of core particles in the 

cytoplasm. 

Equation (2) is the dynamics of 

transcription from cccDNA. This equation 

describes the concentration of cccDNA in the 

nucleus (ht) over time. The terms include: 

replenishment rate which reflects the 

contribution to the cccDNA pool from the 

nuclear import and conversion of rcDNA-

containing core particles,  transcription rate of 

pgRNA which represents the rate at which 

cccDNA serves as a template for the 

transcription of pregenomic RNA (pgRNA), 

transcription rate of mRNAs which accounts for 

the transcription of precore mRNAs and other 

subgenomic mRNAs from cccDNA and 

degradation rate of cccDNA which represents 

the natural degradation of cccDNA within the 

nucleus. These equations are adapted from the 

model described by Goyal et-al (2019), which 

provides a detailed framework for 

understanding the intracellular dynamics of 

HBV replication. 

Equation (3) of model system (2.1) 

describes the dynamics of pregenomic RNA 

(pgRNA) translation leading to the formation of 

complete virions. The terms in this equation 

represent the following processes: template 

contribution from cccDNA (αt) which accounts 

for the transcriptional activity of covalently 

closed circular DNA (cccDNA), which serves 

as the template for pgRNA synthesis. The 

pgRNA not only encodes the core and 

polymerase proteins but also acts as the 

precursor for new viral genomes through 

reverse transcription, association rate of 

pregenome-polymerase complex (RNP) and 

core protein which represents the rate at which 

the pgRNA-polymerase complex associates 

with core proteins to form nucleocapsids.  

The encapsulation of pgRNA is a critical 

step in the viral replication cycle, leading to the 

formation of new virions. Translation rate of 

pgRNA to reverse transcription which 

describes the process by which pgRNA is 

reverse transcribed into relaxed circular DNA 

(rcDNA) within the nucleocapsid. These 

processes are integral to the HBV replication 

cycle, highlighting the central role of pgRNA in 

both protein synthesis and genome replication. 

Equation (4) of model system (2.1) 

describes the dynamics of subgenomic RNA 

(mRNA) translation leading to the formation of 

incomplete particles, such as RNA-containing 

particles, empty virions, and subviral particles 

(SVPs). The terms in this equation represent the 

following processes: transcription rate of 

mRNAs which accounts for the rate at which 

covalently closed circular DNA (cccDNA) in 

the nucleus is transcribed into subgenomic 

mRNAs.  

These mRNAs encode various viral 

proteins, including envelope proteins that are 
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essential for particle formation, translation rate 

of mRNAs: following transcription, the 

subgenomic mRNAs are translated in the 

cytoplasm to produce viral proteins. This term 

represents the rate of translation, leading to the 

synthesis of proteins that will assemble into 

incomplete particles and degradation rate of 

mRNAs which accounts for the natural 

degradation of subgenomic mRNAs within the 

cell, which reduces the availability of mRNAs 

for translation.

 

Figure 1. A conceptual diagram of the within-cell model. 

 
 

Equation (5) of model system (2.1) 

describes the dynamics of the intracellular viral 

load, encompassing both complete virions and 

incomplete particles within the cytoplasm. The 

envelopment and release of these particles can 

occur through two primary pathways: recycling 

to the nucleus ( mature core particles or 

nucleocapsids can be transported back to the 

nucleus to replenish the covalently closed 

circular DNA (cccDNA) pool, thereby 

sustaining viral replication) or envelopment 

and secretion (these particles can undergo 

envelopment by passing through the post 

endoplasmic reticulum and pre-Golgi 

compartments, leading to their secretion as 

virions into the extracellular space).These 

pathways are integral to the hepatitis B virus 

(HBV) life cycle, as detailed by Goyal et-al 

(2019). The Figure below shows the parameters 

of the model and their description.

 

Table 2. Parameters values of the within - cell model and their description. 

Parameter Description Value / unit References 

Λr Recruitment rate of rcDNA 100min-1 Assumed 

𝜂r Reaction rate of DNA repair 0.1min-1 Nakabayaski (2016) 

𝛿r Degradation rate of rcDNA 0.001min-1 Nakabayaski (2016) 

δt Degradation rate of cccDNA 0.001min-1 Nakabayaski (2016) 

ρc Recycling rate of rcDNA 0.01min-1 Nakabayaski (2016) 

αt Transcription rate of DNA to RNA code 0.1molecule-1min-1 Nakabayaski (2016) 

μt Transcription rate of mRNA 0.1molecule-1min-1 Nakabayaski (2016) 
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αc Association rate of RNP and core protein 0.1molecule-1min-1 Nakabayaski (2016) 

αi Translation rate of mRNAs 0.1min-1 Nakabayaski (2016) 

δi Degradation rate of mRNAs 0.001min-1 Nakabayaski (2016) 

rc Shedding rate of complete virions 0.1min-1 Nakabayaski (2016) 

ri Shedding rate of incomplete particles 0.1min-1 Nakabayaski (2016) 

Nc Viral burst size of complete virions 10mins-1 Assumed 

Ni Viral burst size of incomplete particles 20min-1 Assumed 

MATHEMATICAL ANALYSIS 

Positivity of the solutions of the Model 

We now examine the positivity of the 

model system (2.1) by demonstrating that if the 

system begins with non-negative initial 

conditions 

(hr(0), ht(0), (hc(0), (hi(0), Vs(0)), the 

solution / trajectories 

(hr(t), ht(t), (hc(t), (hi(t), Vs(t)) of the model 

system (2.1) will remain positive for all t > 0. 

This ensures consistency with a fundamental 

aspect of biological reality. The result is 

summarised in the following theorem. 

Theorem 3.1: Given that the initial conditions 

of the model (2.1) remain nonnegative (i.e 

hr(0) ≥ 0, ht(0) ≥ 0, hc(0) ≥ 0, hi(0) ≥
0,  Vs(0)≥0), the resulting solutions 

(hr(t), ht(t), (hc(t), (hi(t), Vs(t)) are all 

positive for all t ≥ 0. 

Proof: From the Equation (1) of the model 

system (2.1), a differential inequality which 

describes the dynamics of susceptible cell 

population in time is given by: 

dhr(t)

dt
 ≥ αtht(t) − (ηrVs(t) + δr)hr(t)       (3.2) 

 

Therefore, the expression of the differential 

inequality in equation (3.2) can be solved by the 

separation of variables as follows 

dhr(t)

hr(t)
 ≥  αtht(t) − (ηrVs(t) + δr)dt      (3.3) 

Now, letting 

 𝑡∗= sup {t > 0: hr(0)  >  0, ht(0) > 0,

hc(0) >  0, hi(0)  > 0,  Vs(0) > 0} ∈ [0, t],  

and integrating equation (3.3), we thus have  

 ln(hr(t))  ≥  −(δr(t) + ∫ Vs(t
∗)dt∗) + ln(hr(0))

t

0
           (3.4) 

Thus, the solution of the differential 

inequality for the susceptible cell population is 

given by 

hr(t)  ≥  hr(0). exp {−(δrt + ∫Vs(t
∗)dt∗} 

t

0

> 0           (3.5) 

This implies that.  

 lim
t →∞

inf ( hr(t))  ≥ 0 

Applying the same principle to the 

Equation (2), Equation (3) and Equation (4) of 

the model system (2.1), it can be shown that 

lim
t →∞

inf ( ht(t))  ≥ 0, 

lim
t →∞

inf ( hc(t))  ≥ 0, 



Published by The College of Science & Information Technology (COSIT), TASUED, Vol. 18, No. 2, pp. 1-16. 

 

6 
 

lim
t →∞

inf ( hi(t))  ≥ 0. 

Now, using the Equation (5) of the model 

system (2.1) that describes the evolution of the 

viral load of the HBV, we can have the 

following differential inequality given as:  

dVs(t)

dt
 ≥ −(rc + ri)Vs(t)       (3.6) 

Therefore, by the separation of variables we obtained.  

Vs(t)   ≥ Vs(0). exp {−(rc + ri)t} ≥ 0     (3.7) 

 

This implies.  

lim
t →∞

inf ( Vs(t))  ≥ 0. 

Thus, when starting with nonnegative 

initial value conditions in the model system 

(2.1), the solutions of the model will remain 

nonnegative for all t ≥ 0, and this complete the 

proof. 

Feasible Region of the Equilibrium of the Model 

The within-cell model system (2.1) for the 

HBV replication dynamics can be analyzed in 

the region Ω ∈  ℝ+
5 . Since the within-cell 

model (2.1) monitors the dynamics of the 

hepatocytes of a cell, it is empirical that all the 

model variables always stay positives. We 

introduce a region of feasibility. 

Ω = {hr, ht, hc, hi, Vs  ∈  ℝ+
5 ; 0 ≤ hr(t) + ht(t) + hc(t) + hi(t) ≤ M1, 0 ≤ Vs ≤ M2} 

 

Letting ℎ𝑁 = hr + ht + hc + hi and adding 

Equation (1) to Equation (4) of the model 

system (2.1) gives  

 
dVs(t)

dt
 ≥ Λr −  δrhN(t)      

Then we have lim
t →∞

inf ( hN(t)) =  
Λr

δr
. Hence, all 

feasible solutions of the model system (2.1) 

enter the region Ω, where  

{M1 =
Λr

δr
 , M2 =

Λr(Ncαc+Niαi)

δr(rc+ ri)
}  

Thus,  Ω is positively invariant and 

attracting. It is therefore sufficient to search for 

the solutions of the model system (2.1) in Ω. 

Reproduction Number 

In the analysis of the within-cell model of 

hepatitis B virus (HBV) infection, setting the 

right-hand sides of the model system (2.1) to 

zero allows for the determination of equilibrium 

states. The model admits two primary 

equilibrium states (i) virus free equilibrium 

(VFE) state: this state represents a scenario 

where no infection is present within the 

hepatocyte. It is denoted as E0 = (
Λr

δr
, 0, 0, 0, 0). 

Λr

δr
 represents the steady-state level of core 

particles in the cytoplasm and the zeros indicate 

the absence of cccDNA in the nucleus, 

complete virions, incomplete particles, and 

within-cell viral load and (ii) endemic 

equilibrium (EE) state which corresponds to a 

persistent infection within the cell and is 

denoted as E∗ = (hr
∗ , ht

∗ , hc
∗ , hi

∗ , V𝑠
∗ ). 

A critical parameter in understanding the 

dynamics of HBV infection is the basic 

reproduction number, ℜ0. This number 

indicates the average number of new infections 

produced by a single infected cell in a fully 

susceptible environment. It serves as a 

threshold parameter: If ℜ0 < 1, the infection is 

expected to die out over time, leading to the 

stability of the VFE state and if ℜ0 > 1, the 

infection can persist, making the EE state 

stable. The calculation of the reproduction 

number, ℜ0 involves analysing the rates of viral 
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production, infection, and clearance within the 

model. Accurate estimation of ℜ0 is essential 

for predicting the potential for viral spread and 

for designing effective intervention strategies. 

Understanding these equilibrium states and the 

basic reproduction number provides valuable 

insights into the conditions under which HBV 

infection can be controlled or may persist 

within hepatocytes. The reproduction number 

which is one of the necessary and important 

parameters in the analysis of disease outbreak 

is defined and calculated for the model system 

(2.1). 

According to the author in Diekmann 

et-al (1990), the reproduction number is the 

anticipated number of secondary cases that a 

typical infected individual would create in a 

population that is fully susceptible to infection 

over the course of the individual’s infectivity. 

The reproduction number is computed using the 

next generation approach Van den Driessche 

and Watmough (2002). We assume that the 

model system (2.1) can be written in the form: 

{
 
 

 
 
dX

dt
= f(X, Y, Z),

dY

dt
= g(X, Y, Z),

dZ

dt
= h(X, Y, Z).

 

 

Where X ∈ Rr, Y ∈ Rs, Z ∈ Rn; r, s, n ≥ 0. The component X, Y, Z are represented as follows: 

 

{

X = (hr)  non − infected,

Y = (ht, hc, hi) − infected but not infectious,

Z = (Vs)  − infectious.
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Now let U0 = (X∗, 0, 0) ∈ Rr+s+n  (where 

r = 1, s = 3 and n = 1) virus free equilibrium 

(VFE), that is, U0 = (X∗, 0, 0) such that 

f(X∗, 0, 0) = g(X∗, 0, 0) = h(X∗, 0, 0).  Also, 

we assume that the equation g(X∗, Y, Z) = 0 

implicitly determines the function 𝑌 =

�̃�(X∗, Z). Now expressing ht, hc and  hi in terms 

of hr and Vs , we have: 

g1̃(X
∗, Z) =

ηrΛrZ

δr(αt + μt + δt)
 , 

g2̃(X
∗, Z) =

ηrΛrαtZ

δr(αt + μt + δt)(αc + ρc)
 ,        (3.9) 

g3̃(X
∗, Z) =

ηrΛrμtZ

δr(αt + μt + δt)(αi + δi)
 . 

Now we let A = Dzh(h
∗, g̃(X∗, 0), 0) and 

also assume that A can be written in the form 

A = M−D with M ≥ 0 and A > 0, a diagonal 

matrix. Since 
dZ

dt
= h(X, Y, Z), it follows that: 

h(X, Y, Z) = NcαcY2 + NiαiY3 − (rc + ri)Z            (3.10) 

The expression (3.9) and (3.10) imply that: 

h(X∗, g̃(X∗, Z), Z) =
NcαcηrΛrαtZ

δr(αt + μt + δt)(αc + ρc)
+

NiαiηrΛrμtZ

δr(αt + μt + δt)(αi + δi)
− (rc + ri)Z 

Now differentiating h(X∗, g̃(X∗, Z), Z) with 

respect to Z, we get 

𝐷𝑧h(X
∗, g̃(X∗, Z), Z) =

NcαcηrΛrαt(αi + δi) + NiαiηrΛrμt(αc + ρc)

δr(αt + μt + δt)(αc + ρc)(αi + δi)
− (rc + ri) 

At the virus free equilibrium (VFE), (hr
0 , 

ht
0 , hc

0 , hi
0 , V𝑠

0 ) = (
Λr

δr
, 0, 0, 0, 0) such that 

𝐷𝑧h(X
∗, g̃(X∗, 0), 0) =

NcαcηrΛrαt(αi + δi) + NiαiηrΛrμt(αc + ρc)

δr(αt + μt + δt)(αc + ρc)(αi + δi)
− (rc + ri) 

But Dzh(X
∗, g̃(X∗, 0), 0) = M − D which 

implies 

{
M = 

NcαcηrΛrαt(αi + δi) + NiαiηrΛrμt(αc + ρc)

δr(αt + μt + δt)(αc + ρc)(αi + δi)
 ,

D =  (rc + ri).

 

Since the basic reproduction number is 

given by ρ(MD−1), we proceed to find D−1 

which is. 

D−1 =
1

(rc + ri)
 

This implies that the within-cell reproduction 

number is given by: 

ℜ0 =
NcαcηrΛrαt(αi + δi) + NiαiηrΛrμt(αc + ρc)

δr(αt + μt + δt)(αc + ρc)(αi + δi)(rc + ri)
         (3.11) 

The basic reproduction number is the 

spectral radius of the matrix ρ(MD−1). Hence, 

the basic reproduction number of the model 

system (2.1) is expressed as shown in (3.11). 
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The reproduction number (3.11) represents the 

number of infectious hepatocytes in the cell 

when introduced to the completely susceptible 

healthy cell during the infected hepatocyte’s 

period of infectiousness. In mathematical 

terms, the expression for ℜ0, implies that 

infection by HBV will only cease to infect other 

healthy hepatocytes if and only if 

ηrΛr[NcαcηrΛrαt(αi + δi) + Niαiμt(αc +

ρc)] is less than δr[(αt + μt + δt)(αc +

ρc)(αi + δi)(rc + ri)]. 

 

Local Stability of the Virus Free Equilibrium 

To find the local stability of the virus free 

equilibrium of model system (2.1), Theorem 2 

of Van den Driessche and Watmough (2002) 

was applied the following result was 

established.  

Theorem 3.2: The virus free equilibrium 

(VFE) of model system (2.1) is locally 

asymptotically stable whenever ℜ0 < 1 and 

unstable otherwise. 

Proof: Given E0 = (
Λr

δr
, 0, 0, 0, 0), the Jacobian 

of (2.1) is found as follows:

 

                 

 

 

Where:  

{

a = (αt + μt + δt)
b = (αc + ρc)

c = (αi + δi)
d = (rc + ri)

 

Through the characteristic polynomial 

solution, one can determine the eigenvalues of 

the Jacobian matrix: |J(E0) − λI| = 0. After 

simplifying, we get the following equation: 

 

 

It is obvious from equation (3.12) that one 

of the eigenvalues is equal to −δr. We apply the 

Routh Hurwitz stability criterion to determine 

the nature of the remaining eigenvalues of the 

equation (3.12). The following is denoted as the 

determinant of the hurwitz matrices whose 

elements are coefficients (ai
′s) of the 

characteristic’s polynomial equation. 
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It should be noted that all the coefficients 

of the polynomial in equation (3.12) are greater 

than zero and that all the determinants of the 

four matrices are positive whenever ℜ0 < 1. 

Hence, all the roots of the polynomial are either 

negative or have negative real parts, it is 

concluded that the virus free equilibrium is 

locally asymptotically stable otherwise 

unstable. 

Global Stability of Virus Free Equilibrium 

of the Model 

It is investigated that the global stability of 

Virus Free Equilibrium by using the Castillo 

Chavez’s Approach, Castillo-Chavez (2002) as 

illustrated in the Lemma below.  

Lemma 3: Consider the model system (2.1) 

written in the form 

 

where 𝑋 = (ℎ𝑟) comprises of the uninfected 

components, 𝑍 = (ℎ𝑡 , ℎ𝑐 , ℎ𝑖, 𝑉𝑠)Z comprises 

infected and infectious components and (𝑋∗, 0) 

denotes the virus free equilibrium (VFE) of the 

system. For the VFE to be globally 

asymptotically stable, the conditions of (H1) 

and (H2) below must hold: 

 

Then the VFE (𝑋∗, 0) is globally 

asymptotically stable provided that ℜ0 < 1. 

Theorem 3.3: The virus free equilibrium E0of 

model system (2.1) is globally asymptotically 

stable if  ℜ0 < 1 and assumptions (H1) and 

(H2) holds. 

Proof: The GAS of VFE of the model 

system (2.1) will be established using the 

Lemma 3 above. Then 

 

 
and 
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Using AZ and G(X, Z), we deduce G̃(X, Z) 

as follows: 

                                 

  Since 
Λr

δr
≥

hr  it is clear that G̃(X, Z)  ≥ 0 for all(X, Z) ∈ Ω. 

Also A is an M-matrix, since the off-diagonal 

elements of A are nonnegative. Hence, the virus 

free equilibrium is globally asymptotically 

stable. 

 

Virus Infection Equilibrium 

In this section, we derive the expressions 

for the endemic equilibrium. At the virus 

infection equilibrium, the cells are infected by 

the virus and is denoted by E∗ = (hr
∗ , ht

∗ , hc
∗ , 

hi
∗ , V𝑠

∗ ). The point can be derived by equating 

each of the equations of (2.1) to zero and then 

solve simultaneously. We have:

 

                          

Solving (3.13), we obtained the following 

expressions for the endemic states: 

         

where ℜ0 is defined by equation (3.12). From 

result (3.14), the expressions of ht
∗ , hc

∗ , hi
∗  and 

V𝑠
∗ that the endemic equilibrium for the model 

system (2.1) exist for ℜ0 > 1. The results 
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obtained above can be summarised by stating 

the following.  

Theorem 3.4: The model system (2.1) has a 

unique positive equilibrium point whenever 

ℜ0 > 1 and does not exist when ℜ0 ≤ 1.  

 

 

 

Local Stability of the Virus Infection 

Equilibrium  

To determine the local stability of virus 

infection equilibrium for the model system 

(2.1), the equation of the model system was 

linearised to obtain the jacobian matrix. It was 

then evaluated in the jacobian matrix of the 

model system (2.1) at the virus infection 

equilibrium E∗. 

 

We analyzed the model system (2.1) at the 

infection equilibrium and get its Jacobian 

matrix as: 

          

 

We assess for stability of the infection 

equilibrium (E∗) by calculating the eigenvalues 

(λs) of the above Jacobian matrix. The 

characteristic equation for the Jacobian matrix 

is given by: 

                   

where 
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For (𝑎, 𝑏, 𝑐, 𝑑, 𝑒) = (𝛿𝑟ℜ0, (αt + μt +

δt), (αc + ρc), (αi + δi), (rc + ri). In order to 

determine the stability of the infection 

equilibrium (E∗), we use the Routh Hurwitz 

stability criteria to determine the sign of the 

eigenvalues of the characteristic polynomial 

(3.16). According to Routh Hurwitz criteria, 

given a polynomial. 

            

with a real constant coefficient ki where i =

1, 2, 3,… , n is considered. Now from (3.16), we 

will form the routh array as shown below: 

 

ki (For i = 1, 2, 3, … , n) coefficients are taken 

the characteristic equation P(λ) and are 

arranged as shown in the Routh array above. 

Other elements were calculated from these 

elements. Coefficients ai (for i = 1, 2, 3, … , n) 

are calculated as: 

 

Using the routh hurwitz criteria, the process is 

continued until we get a zero in the row with ai 

coefficients. Similarly, bi coefficients, ci 

coefficients and di  coefficients are calculated 

as follows: 

 

In our case, we define the routh array table 

whose elements are the coefficients (ki
′s) of the 

characteristic polynomial P(λ) in (3.15): 

 

where, 
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Since k0, k1, a1, b1, c1 , d1  > 0, we have 

shown that the signs in the first column of routh 

array are all the same and this confirms stability 

of the infection equilibrium. Consequently, this 

completes our test for stability and 

subsequently conclude that the infection 

equilibrium for the model system (2.1) is stable. 

SENSITIVITY ANALYSIS  

The sensitivity analysis was conducted 

for the two Hepatitis B replication metrics at the 

within-cell scale from the model (2.1). Using 

parameters from existing literatures Table 2, we 

parameterise the model (2.1) to produce 

outcomes that can help with hepatitis B 

prevention, control, and eradication. At the 

within-cell scale, the two metrics are: (i) Vs
∗ 

which is the proxy for the individual cell 

infectiousness. This quantity requires further 

investigation because when HBV infection has 

fully established it may require completely 

different strategies to manage and control it 

effectively and efficiently. (ii) ℜ0 which is the 

within-cell basic reproduction number.  

The sensitivity analysis of the two 

metrics (ℜ0, Vs
∗) with respect to all the 

parameters will assist in informing Hepatitis B 

prevention and treatment policy by using high 

impact preventions medical interventions. 

Since the study considered the cell level of 

biological organisation, for the 2 Hepatitis B 

replication metrics, (ℜ0, Vs
∗) the normalised 

sensitivity index with respect to a parameter P 

is given by: 

 

where 
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Table 3. The evaluation of how sensitive the two Hepatitis B replication measures, (ℜ0, Vs
∗), were to the 

baseline parameters of the HBV within-cell model. 

S/N Parameter Sensitivity Index of 𝕽𝟎 Sensitivity Index of 𝐕𝐬
∗ 

1  Λr 0.999950741 0.999952125 

2 ηr 0.999950741 0.000001392 

3 δr -0.999950741 -0.000001392 

4 ρc -0.028602386 -0.028602423 

5 δt -0.004974879 -0.004974886 

6 αt -0.184426990 -0.184427245 

7 αc 0.028602386 0.028602426 

8 μt 0.184426990 0.184427245 

9 α𝑖 0.006785391 0.006785400 

10 δ𝑖 0.006785391 0.006785400 

11 rc -0.499975370 -0.499976063 

12 r𝑖 -0.499975370 -0.499976063 

13 Nc 0.314626246 0.314626681 

14 N𝑖 0.685324495 0.685325444 

 

Figure 2. The normalized sensitivity indices of all 

the model parameters that influence the HBV 

replication metric of the model parameters of the 

within-cell HBV metric ℜ0. 

 

 

 

 

 

 

 

 

Figure 3: The normalized sensitivity indices of all 

the model parameters that influence the HBV 

replication metric of the model parameters of the 

within-cell HBV metric Vs
∗. 

Based on the sensitivity analysis results of 

both ℜ0 and Vs
∗ to all the parameters of the 

baseline model (2.1) as depicted in Figure 2 and 

Figure 3, the following conclusions were 

drawn: 

i. Positive parameters will cause the 

values of ℜ0 and Vs
∗ to grow as they 

increase, whereas negative parameters 

will cause the values of ℜ0 and Vs
∗ to 

fall as they increase. The metric ℜ0 is 

extremely sensitive to the four of the 
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parameters (Ni , Nc, ηr, Λr). The 

sensitivity of Vs
∗  to the same 

parameters is variable, with Vs
∗ being 

least sensitive to ηr. Given that ℜ0 and 

Vs
∗ exhibit notable sensitivity to (Ni , 

Nc, Λr), it follows that, in order to 

improve the validity and reliability of 

the model system (2.1), attention must 

be made to ensure that these within-cell 

model parameters are accurate when 

collecting data. 

ii. The Vs
∗ is less sensitive to ηr while ℜ0 

is significantly sensitive to ηr,this 

implies that medical intervention such 

as cccDNA Inhibitors wound help to 

reduced replication of the virus at the 

start of the epidemic. 

 

CONCLUSION 

The primary contribution of this study to 

scientific understanding is the development of 

a within-cell, single-scale model of hepatitis B 

that distinguishes between the secretion of 

complete virions and incomplete particles from 

the cytoplasm of a cell. This model underscores 

the importance of considering the pathogen’s 

life cycle to accurately capture the replication 

cycle. Developing microscale model only for 

the studying of biological system may not ideal 

and such system cannot be said to be a complex 

system due to its limitations (this scale is in 

isolation and lacks the ability to predict system-

wide behaviour or guide interventions 

effectively). Multiscale modeling that involves 

both scales should be encouraged by modelers 

in the formation and development of infectious 

diseases as a complex system which required 

processes and mechanisms (this approach by 

contrast allows for the integration of these 

interconnected layers into a unified 

framework). 
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