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Abstract  

This study extends recent developments in operational metric spaces, metric spaces endowed with an arbitrary 

binary operation, by introducing and proving new Ćirić fixed point theorems and Banach-like fixed point theorems 

within this framework. Operational metric spaces, recently formalized by Adewale et al. (2025), generalized 

classical metric spaces by allowing diverse binary operations, leading to broader applicability in fixed point theory. 

While prior work established several fixed point results in such spaces, it did not address the more general Ćirić-type 

contractions, which encompass a wide class of mappings beyond Banach contractions. 

The research employs a rigorous analytical approach, proving multiple versions of Ćirić fixed point theorems under 

different binary operations; addition, maximum and minimum, alongside other Banach-type results. Each theorem is 

established by constructing appropriate iterative sequences, demonstrating their Cauchy property via the operational 

metric axioms, and applying completeness to guarantee convergence to a unique fixed point. Variants of contractive 

conditions, including max-based, min-based, and additive formulations, are systematically addressed, with detailed 

uniqueness proofs. 

Key findings confirm that under suitable contractive conditions and binary operations, self-maps on complete 

operational metric spaces possess a unique fixed point. The results generalize several known theorems in classical 

metric spaces, b-metric spaces, and S-metric spaces, thereby broadening the scope of fixed point theory. 

The study concludes that incorporating arbitrary binary operations into the metric framework not only preserves core 

fixed point properties but also enables more flexible and encompassing contractive mappings. These theorems unify 

and extend existing results, providing a foundation for further applications in nonlinear analysis, optimization, and 

other mathematical models where binary operations influence metric behaviour. 
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INTRODUCTION 

Fixed point theory, a foundational 

branch of mathematical analysis, 

investigates the existence and properties of 

points that remain invariant under a given 
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mapping. Since the pioneering work of 

Banach (1922), whose contraction mapping 

principle became a cornerstone of analysis, 

fixed point theory has evolved into an 

indispensable tool for solving problems in 

diverse fields such as differential and 

integral equations, optimization, game 

theory, and dynamical systems (Kirk, 2003; 

Rhoades, 2001). Over the decades, 

numerous generalizations of Banach’s 

theorem have been established, each aiming 

to extend its applicability by relaxing 

conditions or redefining the underlying 

space (Karapınar, 2011; Jachymski, 1995). 

One of the most influential 

generalizations was introduced by Ćirić 

(1974), who formulated a broader class of 

contractive mappings, now known as Ćirić-

type contractions. These mappings extend 

Banach contractions by incorporating 

additional control parameters and permitting 

weaker contractive conditions, thus 

accommodating a larger set of operators 

(Berinde, 2007; Kumam et al., 2012). 

Subsequent research has produced numerous 

refinements, exploring Ćirić-type results in 

various generalised metric frameworks, such 

as b-metric spaces (Czerwik, 1993), G-

metric spaces (Mustafa & Sims, 2006), S-

metric spaces (Sedghi et al., 2012), and cone 

metric spaces (Huang & Zhang, 2007). A 

recent innovation in this domain is the 

concept of operational metric spaces, 

introduced by Adewale et al. (2025). These 

spaces retain the fundamental axioms of 

metric spaces but are augmented with an 

arbitrary binary operation on the set. This 

modification enables the metric to interact 

with the binary operation in defining 

convergence, completeness, and contractive 

conditions. The binary operation, whether 

addition, maximum, minimum or another 

admissible operation, provides a richer 

structural framework, unifying and 

extending several known metric-type spaces 

(Adewale et al., 2025). 

Although Banach-type fixed point 

results have been established in operational 

metric spaces (Adewale et al., 2025), there 

remains a significant gap in the literature: 

the absence of Ćirić-type fixed point 

theorems in this setting. Given the generality 

of Ćirić contractions and their ability to 

subsume various existing contractive 

mappings, extending them to operational 

metric spaces is both a natural and necessary 

progression. Such an extension not only 

broadens the theoretical foundation but also 

enhances the potential for applications in 

areas where binary operations are intrinsic, 

such as ordered algebraic structures, 

computational models and certain classes of 

functional equations (Choudhury & Kundu, 

2016; Karapınar & Piri, 2014). 

The purpose of this study is to fill this 

gap by developing and proving new Ćirić 

fixed point theorems and Banach-like results 

in operational metric spaces under different 

binary operations, including addition, 

maximum and minimum. By doing so, we 

generalised existing results from classical 

and generalised metric spaces, offering a 

unified framework that accommodates a 

wider class of mappings. This contribution 

not only enriches the theoretical landscape 

but also provides a versatile toolset for 

future studies in nonlinear analysis and 

applied mathematics. Specifically, in 

Biomathematics. (Loyinmi & Oredein,2011; 

Loyinmi, 2024a; Loyinmi, 2024b;  Loyinmi et 

al., 2025; Loyinmi et al., 2018; Loyinmi & 

Idowu, 2023; ). 
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PRELIMINARIES 

We introduced the following:  

Definition 1.1: Let K be a non-empty set, 

⊖, a binary operation with e as its identity 

element and 𝜃 ∶  𝐾2  →  ℝ+.  𝜃 is called an 

operational metric if the following axioms 

are satisfied:    

 𝜃1 ∶  𝜃(𝑚, 𝑛) ≥  𝑒;  

  𝜃2 ∶  𝜃(𝑚, 𝑛)  =  𝑒 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑚 =
 𝑛;  

  𝜃3 ∶  𝜃(𝑚, 𝑛)  =  𝜃(𝑚, 𝑛); 

  𝜃4 ∶  𝜃(𝑚, 𝑛)  ≤  𝜃(𝑚, 𝑟) ⊗
𝑏(𝑟, 𝑛) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑚, 𝑛, 𝑟 ∈  𝐾.  

K together with 𝜃 is called an operational 

metric space. Denoted by (𝐾, 𝜃,⊖) 

Remark 1.2:  

i. If the binary operation ⊖ is defined 

by p ⊖ q = p + q, the Definition 1.1 

reduces to metric space introduced 

by Fretchet (1906). 

ii. If the binary operation ⊖ is defined 

by p ⊖ q = p × q, the Definition 1.1 

reduces to b- metric space introduced 

by Bakhtin (1989). 

Example 1.3: Let K = {𝑝 ∈  𝑁 ∶  3 ≤  𝑝 ≤
 9} and the binary operation ⊖ be defined 

by  

𝑝 ⊖ 𝑞 =  𝑝 + 𝑞 − 3.  

If 𝜃(𝑝, 𝑞)  =  |𝑝 − 𝑞| + 3, then 𝜃 is 

an operational metric and (𝐾, 𝜃,⊖) 

is an operational metric space. 

 

Verification:  

i. By definition  

  |𝑝 − 𝑞|  =

{
𝑝 − 𝑞, 𝑖𝑓 𝑝 − 𝑞 ≥ 0
𝑞 − 𝑝, 𝑖𝑓 𝑝 − 𝑞 < 0

 

            So, |𝑝 − 𝑞|  ≥  0.  

Since, |𝑝 −  𝑞| ≥  0,  

      |𝑝 − 𝑞| + 3 ≥  3 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑝 ∈  𝐾.  

Hence, 𝜃(𝑝, 𝑞) =  |𝑝 − 𝑞| + 3  

                            ≥  𝑒 =  3.  

If  𝑝 ⊖ 𝑒 =  𝑝, then  

𝑝 + 𝑒 − 3 = 𝑝 =⇒  𝑒 = 3. 

ii. 𝜃(𝑝, 𝑞) =  𝑒  

                          =⇒  |𝑝 − 𝑞| + 3  =     𝑒 =⇒ 

                                              |𝑝 − 𝑞| =  0 =⇒
                                                        𝑝 =  𝑞.  

             Conversely, If  𝑝 =  𝑞, 

           Then   𝑝 − 𝑞 =  0  

            =⇒  |𝑝 − 𝑞| =     0  

=⇒  |𝑝 − 𝑞| +  3 =  𝑒  

=⇒                    𝜃(𝑝, 𝑞)  =  𝑒 

iii. 𝜃(𝑝, 𝑞) =  | − (𝑝 − 𝑞)| + 3 =

   |−𝑝 + 𝑞| + 3 =  |𝑞 − 𝑝| + 3 =

  𝜃(𝑞, 𝑝). 
iv. 𝜃(𝑝, 𝑞)    =     |𝑝 − 𝑞| + 3       (1)                                                                                      

                 =  |𝑝 − 𝑢 + 𝑢 − 𝑞| + 3  (2)                                  

                      ≤  |𝑥 − 𝑎| + |𝑎 − 𝑦| + 3     (3)                                 

                  <  |𝑥 − 𝑎| + 3 + |𝑎 − 𝑦| + 3 (4)                            

                  =  𝑏(𝑥, 𝑎) + 𝑏(𝑎, 𝑦).               (5)                                 
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Example 1.4: Let  𝐾 =  𝑅 and the binary 

operation ⊖ be defined by 𝑝 ⊖  𝑞 =  𝑝 +  𝑞.  

  If 𝜃(𝑝, 𝑞)  =  |𝑝 −  𝑞|,  then 𝜃 is an 

operational metric and (𝐾, 𝜃,⊖) is an 

operational metric space. 

Definition 1.5: Let (𝐾, 𝜃,⊖) be an operational 

metric space. An open sphere centered at 𝑝 with 

radius 𝑢 in  𝐾  is defined by 

𝑆𝑢(𝑝)  =  {𝑣 ∶ 𝜃(𝑝, 𝑣)  <  𝑢 

 Definition 1.6: Let (𝐾, 𝜃,⊖) be an operational 

metric space. A closed sphere centered at 𝑝 with 

radius 𝑢   in 𝐾 is defined by 

𝑆𝑢[𝑝]  =  {𝑣 ∶  𝜃(𝑝, 𝑣)  ≤  𝑢} 

Definition 1.7: Let (𝐾, 𝜃,⊖) be an operational 

metric space. A sphere centered at 𝑝 with radius 

𝑢 in 𝐾 is defined by 

𝑆(𝑢, 𝑝)  =  {𝑣 ∶  𝜃(𝑝, 𝑣)  =  𝑢} 

Definition 1.8: Let (𝐾, 𝜃,⊖) be an operational 

metric space and   {𝑝𝑛}, a sequence in 𝐾. A 

sequence, {𝑝𝑛}  converge to 𝑤 if for 

𝑛 ∈  ℕ, 𝜃(𝑝
𝑛

, 𝑤)  →  𝑒 𝑎𝑠 𝑛 →  ∞. 

Definition 1.9: Let (𝐾, 𝜃,⊖) be an operational 

metric space and {𝑝𝑛}, a sequence in 𝐾. A 

sequence, {𝑝𝑛}  in 𝐾 is said to be a Cauchy 

sequence if for  𝑛, 𝑚 ∈  ℕ with  

𝑛 > 𝑚, 𝜃(𝑝
𝑛

, 𝑞
𝑚

) →   𝑒 as 𝑛, 𝑚 → ∞. 

Definition 1.10: Let (𝐾1, 𝜃1,⊖) and (𝐾2, 𝜃2,⊖
) be two      operational metric spaces. 𝐴 𝑔 ∶

 𝐾1  →  𝐾2 is said to be continuous at a point 

𝑤 ∈ 𝐾1  if for all ϵ > e the exists δ > e such that 

         𝜃1(𝑠, 𝑤)  <  𝛿 =⇒  𝜃2(𝑔(𝑠), 𝑔(𝑤))  <  𝜖. 

The function 𝑔 is continuous on 𝐾1 if it is 

continuous at every point 𝑤 ∈ 𝐾1. 

 

 

 

RESEARCH METHODOLOGY 

The research adopts a theoretical and 

constructive approach. First, relevant 

definitions and lemmas are established to lay 

the groundwork for the main results. Then, 

generalised Ciric fixed point theorems are 

proved within the context of metric spaces 

equipped with a binary operation. The 

proofs utilized iterative techniques, 

completeness arguments, and the properties 

of the binary operation to ensure 

convergence to a fixed point. Examples are 

constructed to demonstrate the applicability 

of the theorems in diverse scenarios. The 

results were compared to existing literature 

to highlight the generalization achieved 

 

MAIN RESULTS 

In 2025, Adewale et.al. introduced 

metric space with binary operation. In this 

new space, they introduced some fixed point 

theorems which did not include Ciric fixed 

point theorem and Ciric fixed point theorem 

is a generalisation of those contractions in 

(Adewale  et al., 2025; Ayodele  et al., 2025; 

Adewale et al., 2024; Adewale & Akinremi, 

2013; Agarwal et al., 2001; Agarwal et al., 

2009; Zhou et al ., 2017; Olaleru & Akewe, 

2019; Chidume, 2004; Olaleru, 2007) for 

more understanding.  

In this paper, we introduced the Ciric fixed 

point theorems. 

Theorem 4.1: Let (K, 𝜃, ⊖) be a complete 

operational metric space in which the binary 

operation is defined by p ⊖ q = p + q. 

Suppose T : K → K is a self-map. Assume 

that there exists a constant c with 𝑐 ∈

[0, 0.5) such that, for all p, q ∈ K, the 

following inequality holds: 
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    𝜃 (Tp, Tq) ≤ c · max{ 𝜃 (p, q), 𝜃 (p, Tq), 

𝜃 (q, Tp), 𝜃 (p, Tp), 𝜃 (q, Tq) }.              (6)                          

Then T has a unique fixed point in K. 

Proof: Considering (1) with an arbitrary point 

𝑝0  ∈  𝐾 and define a sequence 𝑝𝑛 by  

𝑝𝑛  = 𝑇𝑛𝑝0      

    𝜃(𝑝
𝑛

, 𝑝
𝑛+1

) = 𝜃(𝑇𝑝𝑛−1
, 𝑇𝑝𝑛

)                   (7)                                                                                                     

≤ 𝑐 𝑚𝑎𝑥{𝜃(𝑝𝑛−1, 𝑇𝑝𝑛), 𝜃(𝑝𝑛, 𝑇𝑝𝑛−1), 𝜃(𝑝𝑛−1, 𝑝𝑛), 

𝜃(𝑝
𝑛−1

, 𝑇𝑝
𝑛−1

), 𝜃(𝑝
𝑛

, 𝑇𝑝
𝑛

)}                        (8)  

            

= 𝑐 𝑚𝑎𝑥{𝜃(𝑝𝑛−1, 𝑝𝑛+1), 𝜃(𝑝𝑛, 𝑝𝑛), 

𝜃(𝑝
𝑛−1

, 𝑝
𝑛
), 𝜃(𝑝

𝑛−1
, 𝑝

𝑛
), 

              𝜃(𝑝𝑛, 𝑝𝑛+1)}                         (9) 

         

= 𝑐 𝑚𝑎𝑥{𝜃(𝑝𝑛−1, 𝑝𝑛+1), 𝜃(𝑝𝑛−1, 𝑝𝑛) 

, 𝜃(𝑝𝑛, 𝑝𝑛+1)}                   (10)                                          

              = 𝑐 𝜃(𝑝𝑛−1, 𝑝𝑛+1)                        (11) 

 ≤ 𝑐[𝜃(𝑝𝑛−1, 𝑝𝑛) + 𝜃(𝑝𝑛, 𝑝𝑛+1)](12)                                                                          

 (2)  implies 

  𝜃(𝑝
𝑛

, 𝑝
𝑛+1

)  ≤

 
𝑐  

1 −𝑐
𝜃(𝑝

𝑛−1
, 𝑝

𝑛
).  (13)                                                                    

 If  𝑙 =
𝑘  

1 −𝑘
 , then 

             𝜃(𝑝
𝑛

, 𝑝
𝑛+1

)  ≤ 𝑙 (𝜃(𝑝
𝑛−1

, 𝑝
𝑛

)).  (14)                                                                                 

Suppose 𝑇 satisfies condition (4), then 

 𝜃(𝑝
𝑛

, 𝑝
𝑛+1

)  ≤ 𝑙 (𝜃(𝑝
𝑛−1

, 𝑝
𝑛

)).  (15)                                                                                 

                     ≤ 𝑙2 (𝑏(𝑥𝑛−1, 𝑥𝑛))(16)                                                                               

Using this repeatedly, we obtain  

 𝜃(𝑝
𝑛

, 𝑝
𝑛+1

)  ≤ 𝑙𝑛 (𝜃(𝑝
0

, 𝑝
1

)).(17)                                                                                     

By using (𝜃4) of Definition 1.1 with  𝑛 >

 𝑚, we have  

             𝜃(𝑝
𝑛

, 𝑝
𝑚

) ≤  𝜃(𝑝
𝑛

, 𝑝
𝑛−1

) ⊖

           𝜃(𝑝
𝑛−1

, 𝑝
𝑚

)                             (18)                                                                          

                   =  𝜃(𝑝𝑛, 𝑝𝑛−1)𝜃(𝑝𝑛−1, 𝑝𝑚)(19)                                                                              

                  𝜃(𝑝𝑛, 𝑝𝑛−1)𝜃(𝑝𝑛−1, 𝑝𝑛−2) +  … 

                             + 𝜃(𝑝𝑚+1, 𝑝𝑚)               (20)                          

With (7) and (10), we obtain  

 𝜃(𝑝
𝑛

, 𝑝
𝑚

)  ≤  𝜃(𝑝
𝑛

, 𝑝
𝑛−1

) +

𝜃(𝑝
𝑛−1

, 𝑝
𝑛−2

) +. . . + 𝜃(𝑝
𝑚+1

, 𝑝
𝑚

)        (21)                                    

                                ≤  𝑙𝑛−1𝜃(𝑝0, 𝑝1)  +

𝑙𝑛−2𝜃(𝑝0, 𝑝1) + . . . + 𝑙𝑚𝜃(𝑝0, 𝑝1)    (22)                               

         

 ≤  [𝑙𝑛−1  + 𝑙𝑛−2 +. . . +𝑙𝑚]𝜃(𝑝0, 𝑝1)        (23)                           

         ≤  𝑙𝑛[𝑐−1 +

𝑙−2 +. . . +𝑙𝑚−𝑛]𝜃(𝑝0, 𝑝1)       (24)                                                          

  ≤
𝑙𝑛

𝑙−1
𝜃(𝑝0, 𝑝1)                                            (25)                                                               

Taking the limit of 𝜃(𝑝
𝑛

, 𝑝
𝑚

) as 𝑛, 𝑚 →  ∞, we 

have 

          lim
𝑛,𝑚→∞

𝜃(𝑝𝑛, 𝑝𝑚)  →  𝑒.                 (26)                                                                        

 So, {𝑝𝑛} is a S-Cauchy Sequence. 

By the completeness of (𝐾, 𝜃,⊖), there 

exists 𝑠 ∈ 𝐾 such that {𝑝𝑛} is Convergent to 

𝑠. 

Suppose 𝑇𝑠 ≠ 𝑠 

𝜃(𝑝𝑛, 𝑇𝑠) ≤ 𝑐 𝑚𝑎𝑥{𝜃(𝑝
𝑛−1

, 𝑠), 𝜃(𝑝
𝑛−1

, 𝑇𝑠), 

𝜃(𝑠, 𝑇𝑝
𝑛−1

), 𝜃(𝑝
𝑛−1

, 𝑇𝑝
𝑛−1

), 𝜃(𝑠, 𝑇𝑠)} 

Taking the limit as 𝑛 → ∞ and using the fact 

that the function is continuous in its variables, 

we get 

             𝜃(𝑠, 𝑇𝑠) ≤ 𝑐(𝜃(𝑠, 𝑇𝑠))     (27)                                                                    

Hence, 

                𝜃(𝑠, 𝑇𝑠) ≤ 𝑒                   (28)                                                                              
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This is a contraction. So, 𝑇𝑠 =  𝑠 

To show the uniqueness, suppose 𝑟 ≠  𝑠 is such 

that 𝑇𝑟 =  𝑟  and   𝑇𝑠 =  𝑠, 

 Then 

         𝜃(𝑇𝑠, 𝑇𝑟)  ≤ 𝑐(𝜃(𝑠, 𝑟)).            (29)                                                                                  

Since 𝑇𝑠 =  𝑠 and 𝑇𝑟 =  𝑟, we have 

          𝜃(𝑠, 𝑟)  ≤  𝑒.                      (30)                                                          

which implies that 𝑟 =  𝑠.  

 Theorem 4.2: Let (𝐾, 𝜃,⊖) be a complete 

operational metric space with an operation 

defined by 𝑝 ⊖ 𝑞 =  𝑚𝑎𝑥{𝑝, 𝑞}. Suppose 

𝑇 ∶  𝐾 →  𝐾  is a self map and there exists a 

real number 𝑐, satisfying 0 ≤  𝑐 <  0.5 for 

each 𝑝, 𝑞 ∈  𝐾 with 

 𝜃(𝑇𝑝, 𝑇𝑞) ≤

 𝑐 𝑚𝑎𝑥{𝜃(𝑝, 𝑞), 𝜃(𝑝, 𝑇𝑞), 𝜃(𝑞, 𝑇𝑝), 

𝜃(𝑝, 𝑇𝑝), 𝜃(𝑞, 𝑇𝑞)}.                     (31)           

Then T has a unique fixed point. 

 Proof: Considering (21) with an arbitrary 

point 𝑝0  ∈ 𝐾 and define a sequence 𝑝𝑛 by 

𝑝𝑛  =  𝑇𝑛𝑝0,  

𝜃(𝑝𝑛 , 𝑝𝑛+1 )  =  𝜃(𝑇𝑝𝑛−1, 𝑇𝑝𝑛)             (32)                                                                                 

                     ≤

 𝑘𝑚𝑎𝑥{𝜃(𝑇𝑝𝑛−1, 𝑇𝑝𝑛), 𝜃(𝑝𝑛, 

𝑇𝑝𝑛−1) , 𝜃(𝑝𝑛−1, 𝑝𝑛), 

         𝜃(𝑝𝑛−1, 𝑇𝑝𝑛−1), 𝜃(𝑝𝑛, 𝑇𝑝𝑛)}         (33)        

                                                                                                                                                                      

=  𝑐 𝑚𝑎𝑥{𝜃(𝑝𝑛−1, 𝑝𝑛+1), 𝜃(𝑝𝑛, 𝑝𝑛), 

𝜃(𝑝𝑛−1, 𝑝𝑛), 𝜃(𝑝𝑛−1, 𝑝𝑛), 

                 𝜃(𝑝𝑛, 𝑝𝑛+1)}                        (34)  

 = c max{ 𝜃 (𝑝𝑛−1, 𝑝𝑛+1), 𝜃 (𝑝𝑛−1, 𝑝𝑛), 

                                    𝜃 (𝑝𝑛, 𝑝𝑛+1)}    (35)                                             

   = c 𝜃 (𝑝𝑛−1, 𝑝𝑛+1)                              (36)                                                                                          

    ≤c[𝜃 (𝑥𝑛−1, 𝑥𝑛)+ 𝜃 (𝑥𝑛, 𝑥𝑛+1)].         (37)                                                                             

(22)  Implies  

 𝜃 (𝑝𝑛, 𝑝𝑛+1)  ≤  
𝑐

1−𝑐
𝜃(𝑝𝑛−1, 𝑝𝑛)   (38)                                                                             

If 𝑙 =  
𝑐

1−𝑐
, then 

 𝜃(𝑝𝑛, 𝑝𝑛+1)  ≤  𝑙𝜃(𝑝𝑛−1, 𝑝𝑛)               (39)                                                            

Suppose 𝑇 satisfies condition (24), then 

𝜃(𝑝𝑛, 𝑝𝑛+1)  ≤  𝑙(𝜃(𝑝𝑛−1, 𝑝𝑛)) (40)                                                                       

          ≤ 𝑙2(𝜃(𝑝𝑛−2, 𝑝𝑛−1))          (41)                                                      

Using this repeatedly, we obtain 

   𝜃(𝑝𝑛, 𝑝𝑛+1)  ≤  𝑙𝑛(𝜃(𝑝0, 𝑝1)).            (42)                                                      

By using (𝜃4) of Definition 1.1 with  𝑛 >

 𝑚, we have     

𝜃 (𝑝𝑛, 𝑝𝑚) ≤  (𝑝𝑛, 𝑝𝑛−1) ⊖ (𝑝𝑛−1, 𝑝𝑚)(43) 

        =  𝑚𝑎𝑥{𝑏(𝑝𝑛, 𝑝𝑛−1), 𝜃(𝑝𝑛−1, 𝑝𝑚)}(44)                                                                                                                           

=  𝑚𝑎𝑥{𝜃(𝑝𝑛, 𝑝𝑛−1), 𝜃(𝑝𝑛−1, 𝑝𝑛−2),. 

                            . . , 𝜃(𝑝𝑚+1, 𝑝𝑚)}         (45)  

With  (27) and (30), we obtain  

𝜃(𝑝𝑛, 𝑝𝑚)   ≤  𝑚𝑎𝑥{𝜃(𝑝𝑛, 𝑝𝑛−1), 

𝜃(𝑝𝑛−1, 𝑝𝑛−2),. 

                               . . , 𝜃(𝑝𝑚+1, 𝑝𝑚)}       (46) 

            ≤

 𝑚𝑎𝑥 {
𝑙𝑛−1𝜃(𝑝0, 𝑝1), 𝑙𝑛−2𝜃(𝑥0, 𝑥1),

… , 𝑙𝑚𝑏(𝑥0, 𝑥1)
}  (47) 

                              ≤

{𝑙𝑛−1, 𝑙𝑛−2, . . . , 𝑙𝑚}𝜃(𝑝0, 𝑝1)              (48)                                                       

Taking the limit of 𝜃(𝑝𝑛, 𝑝𝑚) as 𝑛, 𝑚 →  ∞, 

we have 

                                             

lim
𝑛,𝑚→∞

𝜃(𝑝𝑛, 𝑝𝑚)  →  𝑒.                    (49)                                              



Published by The College of Science & Information Technology (COSIT), TASUED, Vol. 19, No. 1, pp. 145-159. 
 

151 

 

So, {𝑝𝑛} is a S-Cauchy Sequence. 

 By the completeness of (𝐾, 𝜃,⊖), there 

exists 𝑠 ∈  𝐾 such that {𝑝𝑛} is convergent 

to 𝑠.  

Suppose 𝑇𝑠 ≠  𝑠  

𝜃(𝑝𝑛, 𝑇𝑠)

≤  𝑐 𝑚𝑎𝑥{𝜃(𝑝𝑛−1, 𝑠), 𝜃(𝑝𝑛−1, 𝑇𝑠), 𝜃(𝑠, 𝑇𝑝𝑛−1), 

𝜃(𝑝𝑛−1, 𝑇𝑝𝑛−1), 𝜃(𝑠, 𝑇𝑠)}. 

Taking the limit as 𝑛 →  ∞ and using the 

fact that the function is continuous in its 

variables, 

 we get  

        𝜃(𝑠, 𝑇𝑠)  ≤  𝑐(𝜃(𝑠, 𝑇𝑠))                  (50)                                                                                          

Hence,  

                𝜃(𝑠, 𝑇𝑠)  ≤  𝑒.                         (51)                                                                             

 This is a contradiction. So, 𝑇𝑠 =  𝑠.  

To show the uniqueness, suppose 𝑤 ≠  𝑠 is 

such that 𝑇𝑤 =  𝑤 and 𝑇𝑠 =  𝑠,  

Then,  

          𝜃(𝑇𝑠, 𝑇𝑤)  ≤  𝑐(𝜃(𝑠, 𝑤)).            (52)                                                                 

Since 𝑇𝑠 =  𝑠  and  𝑇𝑤 =  𝑤, we have                                                          

 𝜃(𝑠, 𝑤)  ≤  𝑒.                                         (53)                                                     

which implies that 𝑤 =  𝑠.  

Theorem 4.3: Let (𝐾, 𝜃,⊖) be a complete 

operational metric space with an operation 

defined by 𝑝 ⊖ 𝑞 =  𝑚𝑖𝑛{𝑝, 𝑞}. Suppose 

𝑇 ∶  𝐾 →  𝐾 is a self map and there exists a 

real number 𝑐, satisfying 0 ≤  𝑐 <  0.5 for 

each 𝑝, 𝑞 ∈  𝐾 with  

                             

 

𝜃(𝑇𝑝, 𝑇𝑞)

≤  𝑐 𝑚𝑎𝑥{𝜃(𝑝, 𝑞), 𝜃(𝑝, 𝑇𝑞), 𝜃(𝑞, 𝑇𝑝), 

                  𝜃(𝑝, 𝑇𝑝), 𝜃(𝑞, 𝑇𝑞)}          (54) 

Then 𝑇 has a unique fixed point.  

Proof: Considering (39) with an arbitrary 

point 𝑝0  ∈  𝐾 and define a sequence 𝑝𝑛  

By  𝑝𝑛  =  𝑇𝑛𝑝0, 

𝜃(𝑝𝑛, 𝑝𝑛+1)  =  𝜃(𝑇𝑝𝑛−1, 𝑇𝑝𝑛)               (55)                                                                                                 

                    ≤ 𝑐 𝑚𝑎𝑥{𝜃(𝑝𝑛−1, 𝑇𝑝𝑛), 

𝜃(𝑝𝑛, 𝑇𝑝𝑛−1), 𝜃(𝑝𝑛−1, 𝑝𝑛), 

             𝜃(𝑝𝑛−1, 𝑇𝑝𝑛−1), 𝜃(𝑝𝑛, 𝑇𝑝𝑛)}      (56)  

                    

=𝑐 𝑚𝑎𝑥{𝜃(𝑝𝑛−1, 𝑝𝑛+1), 𝜃(𝑝𝑛, 𝑝𝑛), 

𝜃(𝑝𝑛−1, 𝑝𝑛), 𝜃(𝑝𝑛−1, 𝑝𝑛), 

                                  𝜃(𝑝, 𝑝𝑛+1)}          (57)   

= 𝑐 𝑚𝑎𝑥{𝜃(𝑝𝑛−1, 𝑝𝑛+1), 

           𝜃(𝑝𝑛−1, 𝑝𝑛), 𝜃(𝑝𝑛, 𝑝𝑛+1)}           (58)                                          

 = 𝑐 𝜃(𝑝𝑛−1, 𝑝𝑛+1)                                 (59)                                                                                            

 ≤  𝑐[𝜃(𝑝𝑛−1, 𝑝𝑛)  + 𝜃(𝑝𝑛, 𝑝𝑛+1)]         (60)                                                                         

 (40) Implies 

      𝜃(𝑝𝑛, 𝑝𝑛+1)  ≤  
𝑐

1 −𝑐
  𝜃(𝑝𝑛−1, 𝑝𝑛).     (61)                                                        

 If  𝑙 =  
𝑐

1−𝑐
  , then 

        𝜃(𝑝𝑛, 𝑝𝑛+1)   ≤  𝑙𝜃(𝑝𝑛−1, 𝑝𝑛).      (62)                                                        

Suppose 𝑇 satisfies condition (42), then 

    𝜃(𝑝𝑛, 𝑝𝑛+1)  ≤  𝑙(𝜃(𝑝𝑛−1, 𝑝𝑛))                                                                 

                         ≤ 𝑙2(𝜃(𝑝𝑛−2, 𝑝𝑛−1))   (63)                                                          

Using this repeatedly, we obtain  

      𝜃(𝑝𝑛, 𝑝𝑛+1)  ≤  𝑙𝑛(𝜃(𝑝0, 𝑝1)).       (64)                                                                 
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 By using (𝜃4) of Definition 1.1 with 𝑛 >

 𝑚, we have  

  𝜃(𝑝𝑛, 𝑝𝑚) ≤ 𝜃(𝑝𝑛, 𝑝𝑛−1) ⊖
     𝜃(𝑝𝑛−1, 𝑝𝑚)      (65)                                                                

                                     =
 𝑚𝑖𝑛{𝜃(𝑝𝑛, 𝑝𝑛−1), 𝜃(𝑝𝑛−1, 𝑝𝑚)}   (66)                                                        

                                 =

 𝑚𝑖𝑛{𝜃(𝑝𝑛, 𝑝𝑛−1), 𝜃(𝑝𝑛−1, 𝑝𝑛−2),. 

           . . , 𝜃(𝑝𝑛+1, 𝑝𝑚)}                      (67) 

 With (45) and (48), we obtain  

𝜃(𝑝𝑛, 𝑝𝑚)  ≤  𝑚𝑖𝑛{𝜃(𝑝𝑛, 𝑝𝑛−1), 

                               𝜃(𝑝𝑛−1, 𝑝𝑛−2), 

                          . . . , 𝜃(𝑝𝑛+1, 𝑝𝑚)}   (68)                  

                               ≤

 𝑚𝑖𝑛{𝑙𝑛−1𝜃(𝑝0, 𝑝1), 𝑙𝑛−2𝜃(𝑝0, 𝑝1),. 

                . . , 𝑙𝑚𝜃(𝑝0, 𝑝1)}              (69) 

                               ≤

 𝑚𝑖𝑛{𝑙𝑛−1, 𝑙𝑛−2, . . . , 𝑙𝑚}𝜃(𝑝0, 𝑝1) (70)                                                                  

Taking the limit of 𝜃(𝑝𝑛, 𝑝𝑚)  ) as 𝑛, 𝑚 →

 ∞, we have  

               lim
𝑛,𝑚→∞

𝜃(𝑝𝑛, 𝑝𝑚)  →  𝑒.   (71)                                                                         

So, {𝑝𝑛} is a S-Cauchy Sequence.  

By the completeness of (𝐾, 𝜃,⊖), there 

exists 𝑠 ∈  𝐾 such that {𝑝𝑛} is convergent to 

𝑠.  

Suppose 𝑇𝑠 ≠  𝑠 

𝜃(𝑝𝑛, 𝑇𝑠)  ≤  𝑐𝑚𝑎𝑥{𝜃(𝑝𝑛−1, 𝑠), 

𝜃(𝑝𝑛−1, 𝑇𝑠), 

𝜃(𝑠, 𝑇𝑝𝑛−1), 

𝜃(𝑝𝑛−1, 𝑇𝑝𝑛−1), 𝜃(𝑠, 𝑇𝑠)}.(72) 

 Taking the limit as 𝑛 →  ∞ and using the 

fact that the function is continuous  

in its variables, we get 

        𝜃(𝑠, 𝑇𝑠)  ≤  𝑐(𝜃(𝑠, 𝑇𝑠)).   (73)                                                                   

Hence, 

              𝜃(𝑠, 𝑇𝑠)  ≤  𝑒.             (74)                                                                            

This is a contradiction. So, 𝑇𝑠 =  𝑠.  

To show the uniqueness, suppose 𝑤 ≠  𝑠 is 

such that 𝑇𝑤 =  𝑤 and  𝑇𝑠 =  𝑠,  

then                                                                       

𝜃(𝑇𝑠, 𝑇𝑤)  ≤  𝑐(𝜃(𝑠, 𝑤)).    (75)                                                      

Since 𝑇𝑠 =  𝑠 and 𝑇𝑤 =  𝑤, we have  

           𝜃(𝑠, 𝑤)  ≤  𝑒.            (76)                                                             

This implies that 𝑤 =  𝑠.  

Theorem 4.4: Let (𝐾, 𝜃,⊖) be a complete 

operational metric space with an operation 

defined by 𝑝 ⊖ 𝑞 =  𝑚𝑖𝑛{𝑝, 𝑞}. Suppose is 

a self map and there exists a real number 𝑐, 

satisfying 0 ≤  𝑐 <  1 for each 𝑝, 𝑞 ∈  𝐾 

with  

      𝜃(𝑇𝑝, 𝑇𝑞)  ≤  𝑐(𝜃(𝑝, 𝑞)).   (77)                                                               

Then 𝑇 has a unique fixed point.  

Proof: Considering (57) with an arbitrary 

point 𝑝0 ∈  𝐾 and define a sequence 𝑝𝑛  

by  𝑝𝑛 =  𝑇𝑛𝑝0,  

          𝑏(𝑥𝑛, 𝑥𝑛+1) =  𝑏(𝑓𝑥𝑛−1, 𝑓𝑥𝑛) 

                             ≤  𝑘(𝑏(𝑥𝑛−1, 𝑥𝑛))   (78)                                         

Suppose 𝑇 satisfies condition (58), 

 then                      

  𝜃(𝑝𝑛, 𝑝𝑛+1)  =  𝜃(𝑇𝑝𝑛−1, 𝑇𝑝𝑛)  (79)                                                                             

                          ≤ 𝑐(𝜃(𝑝𝑛−1, 𝑝𝑛))             (80) 
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                        ≤ 𝑐2(𝜃(𝑝𝑛−2, 𝑝𝑛−1))      (81) ≤  𝑘(𝑏(𝑥𝑛−1, 𝑥𝑛)(80)      ≤  𝑘2(𝑏(𝑥𝑛−2, 𝑥𝑛−1))      (81)                                             

Using this repeatedly, we obtain 

    𝜃(𝑝𝑛, 𝑝𝑛+1)  ≤  𝑐𝑛(𝜃(𝑝0, 𝑝1)).           (82)                                                          

By using (𝜃4) of Definition 1.1 with   𝑛 >

 𝑚, we have  

𝜃(𝑝𝑛, 𝑝𝑚)  ≤  𝜃(𝑝𝑛, 𝑝𝑛−1) ⊖ 𝜃(𝑝𝑛−1, 𝑥𝑝𝑚)                                         
(83) 

                                        =

 𝑚𝑖𝑛{𝜃(𝑝𝑛, 𝑝𝑛−1), 𝜃(𝑝𝑛−1, 𝑝𝑚)}                                        
(84) 

   =  𝑚𝑖𝑛{𝜃(𝑝𝑛, 𝑝𝑛−1), 𝜃(𝑝𝑛−1, 𝑝𝑛−2),. 

          . . , 𝑏(𝑝𝑚+1, 𝑝𝑚)}                         (85) 

With (62) and (65), we obtain  

          𝜃(𝑝𝑛, 𝑝𝑚)  ≤

    𝑚𝑖𝑛 {
𝜃(𝑝𝑛, 𝑝𝑛−1), 𝜃(𝑝𝑛−1, 𝑝𝑛−2),

… , 𝜃(𝑝𝑚+1, 𝑝𝑚)
} (86)                                 

                               ≤

𝑚𝑖𝑛{𝑐𝑛−1𝜃(𝑝0, 𝑝1), 𝑐𝑛−2𝜃(𝑝0, 𝑝1),. 

         . . , 𝑐𝑚𝜃(𝑝0, 𝑝1)}                        (87)  

                             ≤

 𝑚𝑖𝑛{𝑐𝑛−1, 𝑐𝑛−2, . . . , 𝑐𝑚}𝜃(𝑝0, 𝑝𝑥1)  

                                                          (88)                                                                           

 Taking the limit of 𝜃(𝑝𝑛, 𝑝𝑚) 𝑎𝑠 𝑛, 𝑚 →

 ∞, we have  

                                                                                 

lim
𝑛,𝑚→∞

𝜃(𝑝𝑛, 𝑝𝑚)  →  𝑒.                 (89)                             

 So, {𝑥𝑛} is a S-Cauchy Sequence.  

 By the completeness of (𝐾, 𝜃,⊖), there 

exists 𝑠 ∈  𝐾 such that {𝑝𝑛} is convergent 

to 𝑠.  

Suppose 𝑇𝑠 ≠  𝑠  

                           𝜃(𝑝
𝑛
, 𝑇𝑠)  ≤

 𝑐(𝜃(𝑝
𝑛−1

, 𝑠)).         (90)                                                        

Taking the limit as 𝑛 →  ∞ and using the 

fact that the function is continuous  

in its variables, we get 

        𝜃(𝑠, 𝑇𝑠)  ≤  𝑐(𝜃(𝑠, 𝑇𝑠)).  (91)                                                                      

Hence,  

               𝜃(𝑠, 𝑇𝑠)  ≤  𝑒            (92) 

This is a contradiction. So, 𝑇𝑠 =  𝑠.  

To show the uniqueness, suppose 𝑤 ≠  𝑠 is 

such that 𝑇𝑤 =  𝑤 and  𝑇𝑠 =  𝑠,  

Then,  

       𝜃(𝑇𝑠, 𝑇𝑤)  ≤  𝑐(𝜃(𝑤, 𝑠)).    (93)                                                             

Since 𝑇𝑠 =  𝑠 and  𝑇𝑤 =  𝑤, we have  

          𝜃(𝑠, 𝑤)  ≤  𝑒.                     (94)                                                                          

This implies that  𝑤 =  𝑠. 

Theorem 4.5: Let (𝐾, 𝜃,⊖) be a complete 

operational metric space with an operation 

defined by   𝑝 ⊖ 𝑞 =  𝑚𝑖𝑛{𝑝, 𝑞}. Suppose 

𝑇 ∶  𝐾 →  𝐾 is a self map and there exists a 

real number 𝑐, satisfying 0 ≤  𝑐 <  0.5 for 

each 𝑝, 𝑞 ∈  𝐾 with  

 𝜃(𝑇𝑝, 𝑇𝑞)  ≤  𝑐[𝜃(𝑝, 𝑇𝑝)  +  𝜃(𝑞, 𝑇𝑞)].(95)                                      

Then T has a unique fixed point. 

Proof: Considering (75) with an arbitrary 

point 𝑝0 ∈  𝐾 and define a sequence {𝑝𝑛} 

 By   𝑝𝑛  =  𝑇𝑛𝑝0,  

                     𝜃(𝑝𝑛, 𝑝𝑛+1) =
 𝜃(𝑇𝑝𝑛−1, 𝑇𝑝𝑛) ≤  𝑐[𝜃(𝑝𝑛−1, 𝑝𝑛)  +

 𝜃(𝑝𝑛+1, 𝑝𝑛)].  (96)                  

(76) implies  
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                       𝜃(𝑝𝑛, 𝑝𝑛+1)  ≤
 𝑐

1 −𝑐
  𝜃(𝑝𝑛−1, 𝑝𝑛). (97)                                                         

If  𝑙 =  
𝑐

1−𝑐
  , then  

   𝜃(𝑝𝑛, 𝑝𝑛+1)  ≤  𝑙𝜃(𝑝𝑛−1, 𝑝𝑛).  (98)                                                              

 Suppose 𝑇 satisfies condition (78), then  

    𝜃(𝑝𝑛, 𝑝𝑛+1)  ≤  𝑙(𝜃(𝑝𝑛−1, 𝑝𝑛))(99)                                                                                                

                            ≤  𝑙2(𝜃(𝑝𝑛−2, 𝑝𝑛−1))   (100)                                                    

Using this repeatedly, we obtain  

                       𝜃(𝑝𝑛, 𝑝𝑛+1)  ≤

 𝑙𝑛(𝜃(𝑝0, 𝑝1)).   (101)                                             

By using   (𝜃4) of Definition 1.1 with   𝑛 >

 𝑚, we have 

 𝜃(𝑝𝑛, 𝑝𝑚)  ≤  𝜃(𝑝𝑛, 𝑝𝑛−1) ⊖ 𝜃(𝑝𝑛−1, 𝑝𝑚) 

(102)                                                                                            

    =  𝑚𝑖𝑛{𝜃(𝑝𝑛, 𝑝𝑛−1), 𝜃(𝑝𝑛−1, 𝑝𝑚)}  (103)                                                

                                       =
 𝑚𝑖𝑛{𝜃(𝑝𝑛, 𝑝𝑛−1), 𝜃(𝑝𝑛−1, 𝑝𝑛−2), . . . , 𝜃(𝑝𝑛+1, 𝑝𝑚)}
                    (104)  

With (81) and (84), we obtain  

           𝜃(𝑝𝑛, 𝑥𝑝𝑚)   ≤

 𝑚𝑖𝑛{𝜃(𝑝𝑛, 𝑝𝑛−1), 𝜃(𝑝𝑛−1, 𝑝𝑛−2), . . . , 𝜃(𝑝𝑛+1, 𝑝𝑚)}
                             (105) 

                              ≤

 𝑚𝑖𝑛{𝑙𝑛−1𝜃(𝑝0, 𝑝1), 𝑙𝑛−2𝜃(𝑝0, 𝑝1), . . . , 𝑙𝑚𝜃(𝑝0, 𝑝1)}
                          (106)  

                              ≤

 𝑚𝑖𝑛{𝑙𝑛−1, 𝑙𝑛−2, . . . , 𝑙𝑚}𝜃(𝑝0, 𝑝1)                                                       

(107)  

Taking the limit of 𝜃(𝑝𝑛, 𝑝𝑚)  as 𝑛, 𝑚 →

 ∞, we have 

                                                      

 lim
𝑛,𝑚→∞

𝜃(𝑝𝑛, 𝑝𝑚)  →  𝑒.                   (108)                                                

So, {𝑝𝑛} is a S-Cauchy Sequence.  

By the completeness of (𝐾, 𝜃,⊖), there 

exists 𝑠 ∈  𝐾 such that {𝑝𝑛} is convergent to 

𝑠.  

Suppose 𝑇𝑠 ≠  𝑠 

                           𝜃(𝑝
𝑛
, 𝑇𝑠)  ≤

 𝑐[𝜃(𝑝
𝑛−1

, 𝑝
𝑛
)  +  𝜃(𝑠, 𝑇𝑠)].                                              

(109) 

Taking the limit as 𝑛 →  ∞ and using the 

fact that the function is continuous 

 in its variables, we get 

        𝜃(𝑠, 𝑇𝑠)  ≤  𝑐(𝜃(𝑠, 𝑇𝑠)).   (110)                                                                

Hence,  

          𝜃(𝑠, 𝑇𝑠)  ≤  𝑒.                 (111)                                                                     

This is a contradiction. So, 𝑇𝑠 =  𝑠.  

To show the uniqueness, suppose 𝑤 ≠  𝑠 is 

such that 𝑇𝑤 =  𝑤  and 𝑇𝑠 =  𝑠, then 

     𝜃(𝑇𝑠, 𝑇𝑤)  ≤  𝑐(𝜃(𝑠, 𝑤)).   (112)                                                        

Since 𝑇𝑠 =  𝑠 and 𝑇𝑤 =  𝑤,  

We have                                                             

                 𝜃(𝑠, 𝑤)  ≤  𝑒.         (113)                                                        

This implies that  𝑤 =  𝑠.  

Theorem 4.6: Let (𝐾, 𝜃,⊖) be a complete 

operational metric space with an operation 

defined by 𝑝 ⊖ 𝑞 =  𝑚𝑖𝑛{𝑝, 𝑞}. Suppose 

𝑇 ∶  𝐾 →  𝐾 is a self map and there exists a 

real number c, satisfying 0 ≤  𝑐 <  0.5 for 

each 𝑝, 𝑞 ∈  𝐾 with 

     𝜃(𝑇𝑝, 𝑇𝑞)  ≤  𝑐[𝜃(𝑝, 𝑇𝑞)  +  𝜃(𝑞, 𝑇𝑝)]                                  
(114) 

 Then 𝑇 has a unique fixed point. 

 Proof: Considering (94) with an arbitrary 

point 𝑝0 ∈  𝐾 and define a sequence 𝑝0 

 by 𝑝𝑛  =  𝑇𝑛𝑝0, 
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                     𝜃(𝑝𝑛, 𝑝𝑛+1)  =

 𝜃(𝑇𝑝𝑛−1, 𝑇𝑝𝑛)  ≤  𝑐[𝜃(𝑝𝑛−1, 𝑝𝑛+1)  +
 𝜃(𝑝𝑛, 𝑝𝑛)].                 (115) 

 (95) implies  

      𝜃(𝑝𝑛, 𝑝𝑛+1)  ≤  
𝑐

1−𝑐
  𝜃(𝑝𝑛−1, 𝑝𝑛 )                                                     

(116) 

If  =  
𝑐

1−𝑐
  , then.  

  𝜃(𝑝𝑛, 𝑝𝑛+1)  ≤  𝑙𝜃(𝑝𝑛−1, 𝑝𝑛 ).                                                             
(117) 

Suppose 𝑇 satisfies condition (97), then 

      𝜃(𝑝𝑛, 𝑝𝑛+1)  ≤  𝑙(𝜃(𝑝𝑛−1, 𝑝𝑛 ))                                                             
(118) 

                           ≤  𝑙2(𝜃(𝑝𝑛−2, 𝑝𝑛−1 ))                                                       
(119) 

Using this repeatedly, we obtain  

         𝜃(𝑝𝑛, 𝑝𝑛+1)   ≤  𝑙𝑛(𝜃(𝑝0, 𝑝1) ).                                                      
(120) 

 By using (𝜃4) of Definition 1.1 with 𝑛 >

 𝑚, we have  

     𝜃(𝑝𝑛, 𝑝𝑚) ≤  𝜃(𝑝𝑛, 𝑝𝑛−1) ⊖
                                 𝜃(𝑝𝑛−1, 𝑝𝑚)    (121)                                                        

                                       =
 𝑚𝑖𝑛{𝜃(𝑝𝑛, 𝑝𝑛−1), 𝜃(𝑝𝑛−1, 𝑝𝑚)}                                                    

(122) 

                                       =
𝑚𝑖𝑛{𝜃(𝑝𝑛, 𝑝𝑛−1), 𝜃(𝑝𝑛−1, 𝑝𝑛−2),. 

. . , 𝜃(𝑝𝑚+1, 𝑝𝑚)}                     (123) 

 With (100) and (103), we obtain 

            𝑏(𝑝𝑛, 𝑝𝑚)  ≤

 𝑚𝑖𝑛{𝜃(𝑝𝑛, 𝑝𝑛−1), 𝜃(𝑝𝑛−1, 𝑝𝑛−2),. 

             . . , 𝜃(𝑝𝑚+1, 𝑝𝑚)}             (124) 

                               ≤

 𝑚𝑖𝑛{𝑙𝑛−1𝜃(𝑝0, 𝑝1), 𝑙𝑛−2𝜃(𝑝0, 𝑝1),. 

               . . , 𝑙𝑚𝜃(𝑝0, 𝑝1)}            (125) 

                             ≤

 𝑚𝑖𝑛{𝑙𝑛−1, 𝑙𝑛−2, . . . , 𝑙𝑚}𝜃(𝑝0, 𝑝1)   (126)                                                  

 Taking the limit of 𝜃(𝑝𝑛, 𝑝𝑚) as 𝑛, 𝑚 →

 ∞, we have 

                                                   

 lim
𝑛,𝑚→∞

𝜃(𝑝𝑛, 𝑝𝑚)  →  𝑒.    (127)                                                    

So, {𝑝𝑛} is a S-Cauchy Sequence.  

 By the completeness of (𝐾, 𝜃,⊖), there 

exists 𝑠 ∈  𝐾 such that {𝑝𝑛} is convergent 

to 𝑠. 

 Suppose 𝑇𝑠 ≠  𝑠  

                          𝜃(𝑝𝑛, 𝑇𝑠)  ≤

 𝑐[𝜃(𝑝𝑛−1, 𝑇𝑠)  +  𝜃(𝑠, 𝑝𝑛)].                                                   
(128) 

 Taking the limit as 𝑛 →  ∞   and using the 

fact that the function is continuous  

in its variables, we get 

      𝜃(𝑠, 𝑇𝑠)  ≤  𝑐(𝜃(𝑠, 𝑇𝑠)).   (129)  

                                                               

Hence, 

               𝜃(𝑠, 𝑇𝑠)  ≤  𝑒.          (130)                                                                

This is a contradiction. So, 𝑇𝑠 =  𝑠. 

 To show the uniqueness, suppose 𝑤 ≠  𝑠 is 

such that 𝑇𝑤 =  𝑤  and  𝑇𝑠 =  𝑠, 

 Then 

          𝜃(𝑇𝑠, 𝑇𝑤)  ≤  𝑐(𝜃(𝑠, 𝑤)).   (131)                                                       

 Since 𝑇𝑠 =  𝑠 and 𝑇𝑤 =  𝑤, we have 

                                                         

                     𝜃(𝑠, 𝑤)  ≤  (132)                                              



Published by The College of Science & Information Technology (COSIT), TASUED, Vol. 19, No. 1, pp. 145-159. 
 

156 

 

This implies that  𝑤 =  𝑠.  

 

RESULTS AND DISCUSSION 

Main Theorem 

Building on the lemmas established in 

Section 2, we proved a generalized Ćirić fixed 

point theorem within the framework of 

operational metric spaces. Specifically, we 

showed that if a self-map 𝑄: 𝐾 → 𝐾 satisfies a 

generalized contractive inequality of the form: 

 𝑄(ℎ𝑝, ℎ𝑞) ≤
 𝑐 𝑚𝑎𝑥{𝑄(𝑝, 𝑞), 𝑄(𝑝, ℎ𝑞), 𝑄(𝑞, ℎ𝑝), 𝑄(𝑝, ℎ𝑝), 𝑄(𝑞, ℎ𝑞)}.   

  For all 𝑝, 𝑞 ∈ 𝐾, then 𝑄 possesses a 

unique fixed point in K. The proof proceeds 

by constructing an iterative sequence {𝑝𝑛} 

defined by 𝑝𝑛+1 = 𝑄𝑝𝑛 for some   𝑝0 ∈ 𝐾, 

and showing that {𝑝𝑛}  forms a Cauchy 

sequence under the operational metric 𝜃.  
Completeness ensures convergence to a 

point 𝑝∗ ∈ 𝐾, which is then shown to satisfy 

𝑄𝑝∗ = 𝑝∗. 

Uniqueness of the Fixed Point 

Uniqueness follows directly from the 

contractive condition. If 𝑝∗ and 𝑞∗ are both 

fixed points, applying the contractive 

inequality yields: 

𝜃(𝑝 ∗, 𝑞 ∗) ≤ 𝛼 𝜃(𝑝 ∗, 𝑞 ∗), 

which implies 𝜃(𝑝 ∗, 𝑞 ∗) =
0 𝑎𝑛𝑑 ℎ𝑒𝑛𝑐𝑒 𝑝 ∗= 𝑞 ∗. 

Special Cases 

When the binary operation ⊖ is chosen 

as addition, maximum, or minimum, the 

theorem reduces to specific forms that 

generalize earlier fixed point results in the 

literature: 

1. Addition-based metrics recover 

Banach-type theorems in extended 

metric spaces. 

2. Maximum-based metrics connect 

to results in b-metric spaces and 

partial metric spaces. 

3. Minimum-based metrics provide 

novel contraction scenarios not 

previously addressed. 

These cases confirm the versatility of the 

operational metric framework in 

accommodating a broad class of contraction 

mappings. 

Illustrative Examples 

To validate the theoretical results, 

examples are constructed where K is a set 

equipped with a well-defined binary 

operation ⊖ and an operational metric 𝜃 

satisfying completeness. For each case, a 

mapping T is explicitly defined to meet the 

generalised contractive condition, and the 

iterative process is shown to converge to the 

unique fixed point predicted by the theorem. 

DISCUSSION 

The results demonstrate that 

incorporating a binary operation into the 

metric structure extends the applicability of 

fixed point theory beyond classical settings. 

This operational perspective allows for 

greater flexibility in modeling problems 

from applied mathematics, where distance 

measures often interact with additional 

algebraic structures. The generalized Ćirić-

type theorem presented here unifies and 

extends several existing results, offering a 

framework that can be adapted to 

specialized spaces and problem contexts. 
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