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Abstract 

As artificial intelligence (AI) becomes deeply integrated into educational technologies, adaptive learning systems 

offer scalable, personalized instruction. However, the opaque nature of many AI-driven platforms hinders 

learners’ ability to understand and trust system recommendations, an issue that is especially pressing in under-

resourced secondary schools, where algorithmic opacity can worsen existing inequities. This study examines the 

effects of an adaptive learning system embedded with XAI features on learner performance, engagement, and 

perceived agency. A mixed-methods quasi-experimental design was used to compare the outcomes of 350 

secondary school students using a traditional non-adaptive platform and an AI-powered adaptive system with 

XAI. The quantitative data included pre- and post-test scores, engagement logs, and motivation and trust scales. 

Qualitative data were collected through interviews and think-aloud protocols and analyzed thematically using 

Braun and Clarke’s framework. The results revealed that students using the XAI-enhanced system showed 

significantly higher learning gains (p<.05), improved engagement, and a clearer understanding of their learning 

trajectories. Four themes emerged: enhanced trust via algorithmic transparency, alignment of AI feedback with 

personal goals, usability barriers, and cultivating reflective learning habits. Notably, students in resource-limited 

settings responded positively to system explanations, highlighting XAI’s potential of XAI for equitable digital 

learning. The integration of XAI not only boosts academic outcomes but also nurtures learner trust, autonomy, 

and motivation. Ethical considerations, such as fairness, cognitive load, and cultural adaptability, are also 

highlighted, underscoring the importance of human-centered design. These findings advocate for a human-

centered, transparent design in educational AI, which is critical for inclusive adoption in low-resource 

environments.  

Keywords: Explainable artificial intelligence, Adaptive learning, Educational trust, Learner agency, Low-

resource education 

INTRODUCTION 

The rapid integration of artificial 

intelligence (AI) into education has transformed 

the way learners access knowledge, receive 

feedback, and engage with instructional 

materials. Among these innovations, adaptive 

learning systems hold particular promise for 

tailoring instruction to individual needs on a 

large scale basis. By drawing on real-time data 

to adjust pacing, content delivery, and 

assessment, such systems align with 

constructivist learning theories that emphasize 

personalized scaffolding and learner-centered 

progress.  

Explainable artificial intelligence (XAI) has 

emerged as a response to the black-box nature of 

traditional AI models, offering learners and 

educators interpretive pathways to understand 

how recommendations are generated (Miller, 

2019). By providing meaningful explanations, 

XAI not only enhances trust and motivation but 
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also aligns with the principles of human-

centered AI, which prioritizes accountability, 

fairness, and inclusivity (Shneiderman, 2022). 

For learners in underdeveloped educational 

contexts, such transparency is especially critical, 

as it mitigates the risks of alienation, 

misinterpretation, or disengagement resulting 

from opaque algorithmic processes. Moreover, 

XAI has the potential to promote equity by 

ensuring that adaptive systems do not 

disproportionately disadvantage students with 

limited digital literacy or cultural exposure to 

AI-based learning methods. 

Nevertheless, the integration of XAI into 

adaptive learning in secondary schools remains 

underexplored, particularly with respect to 

pedagogical and ethical implications. Existing 

studies often focus on technical performance, 

neglecting issues of equity, contextual 

variability, and the long-term sustainability of 

such interventions (Aroyo & Welty, 2022). In 

addition, XAI may introduce new challenges: 

explanations could increase learners’ cognitive 

load, overwhelm teachers with system 

complexity, or fail to translate across cultural 

contexts (Chen et al. 2023). These limitations 

highlight the need for nuanced inquiries that 

balance the promise of XAI with its practical 

constraints in diverse educational environments. 

Therefore, this study investigated the 

integration of XAI into an adaptive personalized 

learning method within under-resourced 

secondary schools. It aims to examine not only 

the effects of XAI on learner performance, 

engagement, and perceived agency but also its 

broader implications for equity, trust, and 

sustainable educational practice. By combining 

quantitative and qualitative evidence, this study 

contributes to the emerging conversation on how 

transparent, human-centered AI can advance 

inclusive education, particularly in contexts 

where digital inequities are most pronounced. 

 

 

 

 

 

 

 

 

 

RELATED WORKS 
 

Adaptive Learning and the Promise of 

Personalization 

Adaptive learning has emerged as a 

transformative approach to education, offering 

personalized learning experiences that address 

individual learner differences in knowledge, 

pace, and preferences. Unlike traditional static 

instruction, adaptive learning technologies 

leverage data-driven algorithms to monitor 

students’ interactions in real time, adjusting 

instructional content and feedback to optimize 

learning outcomes (Dziuban et al. 2021; 

Gligorea et al. 2022). These systems are 

underpinned by advances in artificial 

intelligence (AI) and learning analytics, 

enabling the dynamic customization of 

pathways that are responsive to learners’ 

evolving needs (Dziuban et al, 2021). Research 

has shown that adaptive learning systems 

significantly enhance cognitive engagement, 

particularly when aligned with learners’ prior 

knowledge and learning behaviors (Gligorea et 

al. 2022; Contrino et al. 2024). 

Empirical studies in higher education, 

particularly in STEM disciplines, have 

demonstrated improved learner performance, 

engagement, and satisfaction when adaptive 

platforms are employed (Contrino et al. 2024). 

For instance, Contrino et al. (2024) found that 

the use of adaptive technology in STEM courses 

significantly improved student engagement and 

performance in the United States. Meta-analyses 

also highlight the potential of adaptive systems 

to close achievement gaps, especially when 

integrated with evidence-based instructional 

strategies (Shute and Rahimi 2021). Despite 

their promise, the scalability and contextual 

effectiveness of adaptive learning systems 

remain concerns in low-resource settings. 

Most research to date has been conducted in 

high-income contexts, with relatively little focus 

on how these systems perform in regions 

characterized by infrastructural constraints, 

limited digital literacy, and high learner-to-

teacher ratios (Kabudi et al. 2021). In such 

settings, adaptive learning systems could offer a 

scalable means to individualize learning at scale; 

however, challenges related to cultural 

relevance, connectivity, and content localization 

persist (Muralidharan et al. 2019; Kabudi et 

al. 2021).  

Thus, while adaptive learning offers 

compelling benefits, there is a critical need for 

context-sensitive deployment strategies that 
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consider the diverse educational landscapes of 

low- and middle-income countries. 

 

Explainable Artificial Intelligence (XAI) in 

Education 

As AI technologies become increasingly 

embedded in educational platforms, the demand 

for explainability has intensified, particularly in 

contexts in which algorithmic decisions 

influence learning pathways, feedback 

mechanisms, and assessment outcomes. XAI 

refers to the design of machine learning systems 

that provide transparent, human-understandable 

justifications for their outputs (Holstein et 

al. 2020; DoshiVelez and Kim 2017). In 

education, XAI has the potential to demystify 

algorithmic decisions for learners and 

instructors, thereby fostering trust, promoting 

learner autonomy, and supporting metacognitive 

development (Hu and Wang 2024). 

Recent studies underscore the pedagogical 

value of explainability in learning environments, 

especially those driven by adaptive algorithms 

such as deep learning. For example, Hu and 

Wang (2024) emphasized that explainable 

recommendation systems in education help 

learners understand why certain materials are 

suggested, thus aligning system logic with 

individual learning goals. Similarly, Holstein et 

al. (2020) argue that explanations provided by 

AI systems must be pedagogically meaningful 

and contextually sensitive to avoid cognitive 

overload and sustain trust. Trust, a central 

element of effective human–AI interaction, is 

consistently linked to the presence of clear and 

understandable explanations in AI systems.  

Luckin et al. (2023), drawing from the social 

sciences, note that human users seek causal and 

contrastive explanations to make sense of 

decision features often missing in conventional 

blackbox AI models. Empirical evidence shows 

that XAI tools can improve student engagement 

and learning outcomes by increasing the 

interpretability of feedback and content 

adaptation (Shute and Rahimi 2021; Petch et 

al. 2022). Furthermore, explanations must be 

tailored to the learner’s cognitive and linguistic 

background to be effective (Holmes et al. 2019), 

and integrating XAI into teacher-facing 

dashboards supports instructional decision-

making and enhances perceived reliability 

among educators (Khosravi et al. 2022). 

Despite these benefits, the field remains 

fragmented, with varying definitions, levels of 

granularity in explanation types, and 

inconsistent evaluation metrics used. Altukhi 

and Pradhan (2025) systematically reviewed the 

landscape and highlighted the pressing need for 

longitudinal studies and culturally responsive 

research to assess the durability and equity of 

XAI-enhanced learning systems. 

 

 

Learner Trust, Engagement, and 

Algorithmic Transparency 

The integration of AI in educational settings 

has introduced adaptive learning systems that 

personalize instruction based on the needs of 

individual learners. While these systems offer 

significant benefits, they also raise concerns 

about transparency and trust. Learners often 

interact with AI-driven platforms without 

understanding how decisions are made, leading 

to potential skepticism and reduced engagement 

(Pachler et al, 2023). Trust in AI systems is 

crucial for effective learning. When learners 

perceive AI recommendations as opaque or 

arbitrary, their confidence in the system 

diminishes, potentially hindering their 

motivation and engagement (Luckin et al. 2023). 

Transparent AI systems that provide clear 

explanations for their decisions can enhance 

learner trust, leading to improved educational 

outcomes (Hu and Wang,  2024). 

XAI aims to make AI decision-making 

processes more understandable for users. In 

educational contexts, XAI can demystify the 

rationale behind content recommendations, 

assessments, and feedback, thereby fostering a 

sense of agency among learners (Petch et 

al. 2022). For instance, providing learners with 

insights into how their performance data 

influence content sequencing can promote self-

regulated learning behaviors (Petch et al. 2022). 

Moreover, transparency in AI systems can 

mitigate algorithm aversion, a phenomenon 

whichere users distrust algorithmic decisions 

when outcomes are unfavorable (Ooge et 

al. 2023).  

Empirical studies have shown that 

visualizing the impact of learner choices on 

content recommendations increases adolescents’ 

trust in e-learning platforms (Miller 2019). Co-

designing AI systems with educators and 

learners ensures that the explanations provided 

by these systems are pedagogically meaningful 

and contextually relevant (Khosravi et al. 2022). 

However, challenges remain in the effective 

implementation of XAI across diverse learner 
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populations and in establishing standardized 

evaluation metrics (Muralidharan et al. 2019). 

 

Conceptual Framework: XAI-Supported 

Personalized Learning 

The conceptual framework guiding this 

study draws on the intersection of adaptive 

learning, XAI, and learner-centered education 

theory. As adaptive learning systems gain 

traction for their ability to personalize 

instruction based on learner performance, the 

need for transparent explanations of AI-driven 

decisions has become increasingly important in 

recent years.  

The framework posits that the integration of 

explainability mechanisms within adaptive 

environments can significantly influence learner 

trust, engagement, and self-regulation in 

learning. At its foundation is the adaptive 

learning cycle, which involves four critical 

processes: (1) data collection, (2) learning 

analytics, (3) content adaptation, and (4) 

feedback delivery (Dziuban et al, 2021). AI 

algorithms process learner interactions to 

dynamically adjust instructional paths. 

However, without explainability, the adaptation 

process may appear opaque, potentially 

undermining learner confidence and motivation 

(Pachler et al. 2023). 

To mitigate this, the framework introduces 

explainability features at two levels: 

1. Learnersfacing explanations  clarify 

why certain content or feedback was 

provided based on past actions or 

preferences, thereby supporting 

metacognitive awareness and self-

regulated learning (Petch et al ,  2022).  

 

2. Teacher-facing explanations  provide 

insights into how the system  interprets  

learner data and  generates  

recommendations, thereby supporting 

pedagogical alignment and instructional  

decision-making  (Holstein et al. 2020).  

These mechanisms are expected to support 

four key educational outcomes. 

 

i. Trust:  Learners are more likely to 

accept and rely on AI-generated 

feedback when they understand  the 

rationale behind it  (Luckin et al. 2023).  

ii. Engagement:  Transparent systems 

promote sustained interaction by 

reducing frustration and increasing user 

satisfaction (Shute and Rahimi ,   2021).  

iii. Autonomy:  Explainable systems 

enable learners to make informed 

choices and develop agency in 

navigating their learning paths ( 

Khosravi   et  al. 2022).  

iv. Equity:  In low - resource contexts,  

explainability  helps bridge digital 

literacy gaps, making AI - based 

platforms more inclusive and culturally 

responsive ( Kabudi   et  al. 2021).  

 

Figure 1 visualizes the framework, 

illustrating how XAI features interact with 

adaptive mechanisms to influence learner 

outcomes in context-sensitive ways. 

These interconnected components aim to 

enhance the effectiveness and equity of AI-

mediated learning, particularly in under-

resourced educational contexts. The framework 

serves as both a theoretical foundation and 

design blueprint for developing ethically robust, 

learner-centered adaptive learning systems. 

 

METHODOLOGY 

Research Design 

This study adopted a mixed-methods and 

quasi-experimental design to examine the 

effects of integrating XAI into adaptive 

personalized learning within under-resourced 

secondary schools. The design combined 

quantitative rigor with qualitative depth, 

enabling both the measurement of learning 

outcomes and the exploration of learners’ 

interpretive experiences. A quasi-experimental 

approach was chosen because full 

randomization was not feasible in school 

settings. Consequently, causal claims are 

interpreted with caution, and findings are 

presented as associations rather than definitive 

causal effects. 
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Figure 1. Conceptual Framework: XAI-Supported Personalized Learning. 

Participants and Context 

The participants included 350 secondary 

school students drawn from eight under-

resourced public schools in southwest Nigeria. 

Schools were selected to reflect diversity in 

socioeconomic status, gender balance and digital 

infrastructure. Teachers and administrators were 

also engaged to provide contextual and 

pedagogical insights into the study. After the 

baseline assessment, the students were allocated 

to groups using matched procedures as follows:  

1. Experimental Group (n = 175):  Used   

an AI-adaptive platform with embedded 

XAI explanations.  

2. Control Group (n = 175):  Used a linear, 

non-adaptive e-learning system 

covering identical content.  

An a priori power analysis (G-Power 3.1) 

for repeated-measures Analysis of Variance 

(ANOVA) (α = .05, 1 – β = .80) indicated that n 

= 150 per group was sufficient to detect a 

medium effect (f = .25). We enrolled 175 

participants per group to accommodate up to 

15% attrition across the four waves. Parental 

consent and institutional ethical approval were 

obtained for the extended cohort and data 

collection schedule. Demographics (gender, 

prior performance, socio-economic status) were 

re-verified at each wave to monitor sample 

balance. 

 

Instruments and Materials 

Quantitative data were collected through 

standardized achievement tests and validated 

learner trust and engagement questionnaires. 

The instruments were pilot-tested and refined 

based on feedback from educators and learners. 

Reliability indices demonstrated strong internal 

consistency (Cronbach’s α = 0.78–0.85), thereby 

ensuring construct validity. 

 

Learning Platforms 

1. Experimental System: A reinforcement-

learning-driven adaptive platform with 

collaborative filtering augmented by 

XAI modules that generate real-time 

textual and visual explanations of 

recommendations.  

2. Control System:  A static, teacher-

curated sequence of e-modules with no 

personalization or automated feedback.  

 

Quantitative Measures 

Quantitative data collection employed 

validated instruments to ensure the construct 

validity. Performance was assessed using pre- 

and post-tests aligned with the national 

curriculum and reviewed by subject-matter 

experts. Engagement was measured through 

system interaction logs and a standardized 

Learner Profile 

 Prior Knowledge 

 Learning Style 

 Motivation 

 Preference 

 Demographics 

Learner Analytics  

 Learner behavior tracking 

 Performance monitoring 

 Learning path modeling 

 Pattern detection 

 Predictive modeling 

 

Adaptive Learning Engine 

 Personalized Recommendations 

 Activity Sequencing 

 Content Adaptation  

 Real-time Decision-making 

XAI Layer 

 Generates explanations 

 Clarifies AI decisions 

 Links recommendations to learner 

data 

 Supports transparency 

 Promotes trust and engagement 

Learning Content Repository 

 Multimedia content (videos, 

quizzes, simulations) 

 Adaptive resources 

Mapped to learning objectives 

 Tagging for personalization 

 

Personalized Feedback & Visualization 

 Goal tracking 

 Visual progress representation 

 Explanation summaries 

 Actionable insights 

 

Learner Interaction & Reflection Loop 

 Learner receives and interacts with content 

 Reflects on feedback and explanations 

 Provides feedback (explicit or implicit) 

 Affective and cognitive data collected 

 

Recommendations 

Adaptation 

Feedback 
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learner engagement scale (Fredricks et al., 

2004). Trust and motivation were assessed using 

established survey instruments adapted to the 

educational technology context (Komiak & 

Benbasat, 2006). Each instrument underwent 

pilot testing with 30 students outside the sample, 

achieving acceptable reliability (Cronbach’s α > 

.78). 

 

Qualitative Protocols 

Qualitative data were collected through 

semi-structured interviews, think-aloud 

protocols and learner reflections. These insights 

into learners’ interpretive processes and 

perceptions of algorithmic explanations are 

discussed. Data were analyzed thematically 

using Braun and Clarke’s (2006) six-step 

framework as follows: 

1. Semi-structured  Interviews: Conducted 

with a stratified subset (n ≈ 40) at  the  

mid-point and end-point to explore 

experiences of transparency, fairness, 

and agency.  

2. Think-Aloud Sessions:  With a rotating 

subset (n ≈ 15), capturing real-time 

cognitive and emotional reactions to 

XAI explanations.  

3. Learner Reflections: Weekly written 

journals from the experimental group  

prompted  learners to describe how 

explanations influenced their 

understanding and confidence. 

 

Procedure 

Learners engaged with the adaptive learning 

platform enhanced with XAI features (e.g., 

explanation dashboards and transparency 

modules) over an 8-week instructional period. 

Both pre- and post-tests were administered, and 

classroom observations supplemented the 

quantitative data. 

1. Baseline (Week 0): Pre-test, 

trust/motivation survey, demographic 

questionnaire,  and  randomization.  

2. Intervention Waves (Weeks 1, 2–3, 5–

8): Platform use in supervised ICT labs,  

weekly reflection prompts ,   and  

ongoing engagement logging.  

3. Mid-Point (Week 3):  Qualitative 

interviews and think-aloud protocols.  

4. End point (Week 8): Post-test, final 

trust/motivation survey, interviews, 

think-aloud, and collection of 

reflections.  

The facilitators ensured equitable support 

across groups. All data were anonymized and 

stored on secure servers. 

 

Data Analysis 

Quantitative data were analyzed using 

ANCOVA to control for baseline differences, 

with effect sizes (η²) reported for interpretation. 

Qualitative interview transcripts were analyzed 

thematically following Braun and Clarke’s 

(2006) framework, enabling the integration of 

learner perceptions with quantitative trends. 

 

Quantitative Analysis (SPSS v28) 

1. Descriptive Statistics:  Means and SDs 

for each measure at all waves.  

2. Repeated-measures ANOVA: Tests 

group × time interactions for knowledge 

gains, trust, and motivation. 

Greenhouse–Geisser corrections  were  

applied if sphericity  was  violated.  

3. Growth Curve Modeling:  Multilevel 

models (students nested within schools) 

estimate individual learning trajectories 

and the influence of XAI over time.  

4. Predictor Analysis: Hierarchical 

regression  was used to examine  how 

early trust and engagement metrics  

predicted  later academic performance.  

 

Qualitative Analysis (NVivo 14) 

1. Thematic Analysis: Following Braun  and  

Clarke’s (2006) six-phase approach, 

combining inductive coding with 

deductive codes derived from the 

conceptual framework (trust, 

transparency, agency).  

2. Longitudinal Coding:  Comparison of 

themes across mid-point and end-point 

data to trace evolving perceptions.  

3. Data Triangulation:  Integration of 

quantitative engagement logs with 

qualitative insights to validate 

interpretations. 

 

Limitations 

1. Attrition: Despite oversampling,  dropout  

may bias later waves; multiple 

imputations will address missing data.  

2. Generality: Findings pertain to similar 

low-resource contexts; replication in 

varied settings is  required .  

3. Self-Report Bias: Trust and motivation 

scales may reflect social desirability; 
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triangulation with behavioral logs  

mitigated  this risk.  
 

RESULTS AND DISCUSSION 

The findings of this study demonstrate that 

integrating XAI into adaptive, personalized 

learning can significantly enhance learner 

engagement, performance, and trust. Students 

using the XAI-enhanced platform not only 

achieved higher test scores but also reported 

greater confidence in their learning processes, 

aligning with previous evidence that 

transparency strengthens learners’ motivation 

and perceived agency (Miller, 2019; 

Shneiderman, 2022). These outcomes affirm the 

value of human-centered AI approaches in 

education, particularly in under-resourced 

contexts where learners may be more vulnerable 

to algorithmic opacity. 

Quantitative Analysis 

The quantitative phase analyzed pre-test and 

post-test performance, engagement scores, and 

learner trust ratings between the experimental 

group (XAI-supported adaptive learning) and 

the control group (standard adaptive system 

without explainability), each of which consisted 

of 175 students. 

 

Learning Gains 

The analysis showed that students using the 

XAI-enhanced adaptive system scored 

significantly higher on post-tests than those in 

the control group. ANCOVA results confirmed 

learning gains after adjusting for pre-test scores, 

with medium effect sizes (η = 0.08). While these 

findings indicate a positive influence of XAI on 

learner outcomes, we caution that the quasi-

experimental design limits the causal inference.  

Improvements may also be partly explained 

by contextual factors, including teacher 

mediation and students’ varying levels of digital 

literacy. In addition to these findings, the 

ANCOVA revealed significant learning gains, 

while a one-way repeated-measures ANOVA 

further confirmed a significant interaction 

between group and time on test scores: F(1, 348) 

= 35.62, p < .001, η² = .093, indicating that 

students in the XAI group showed significantly 

greater improvements in post-test scores than 

those in the control group. 

 

Table 1. Descriptive Statistics for Pre-test and Post-

test Scores by Group. 

 Experimental 

Group (XAI): 

Control 

Group 

Pre-test 

Mean 

51.6 (SD = 9.8) 52.1(SD = 

10.1) 

Post-test 

Mean 

68.9 (SD = 10.3) 60.7(SD = 

11.4) 

 

Table 1 presents the mean and standard 

deviation of the pre- and post-test scores for both 

the experimental (XAI-supported) and control 

groups. This highlights that while both groups 

started with similar baseline performance, the 

experimental group exhibited a notably larger 

increase in post-test scores, indicating the 

positive impact of XAI on learning gains. 

 

Engagement and Trust 

System log data indicated a higher 

frequency of voluntary platform use and longer 

session times among learners in the 

experimental group. Engagement was further 

supported by self-reported motivation and trust 

scores, which showed strong internal 

consistency (Cronbach’s α > 0.80). Qualitative 

interviews reinforced this, with students 

reporting that transparent explanations made AI 

recommendations ‘more believable’ and 

‘aligned with how they learn.’ This convergence 

of quantitative and qualitative evidence 

enhances the findings’ validity. 

Independent samples t-tests were conducted 

on self-reported engagement and trust scales (5-

point Likert scale) after the intervention. 
Table 2 summarizes the comparison of 

engagement and trust scores between the 

experimental and control groups. Students using 

the XAI-supported system reported significantly 

higher engagement and trust, with large t-

statistics (t(348) = 8.32 and 7.91, respectively) 

and p-values below .001, indicating robust group 

differences. These findings suggest that learners 

exposed to XAI reported significantly higher 

levels of system trust and learning engagement 

than those in the control group did. 

 

Table 2. Trust Comparison. 
Measure Group Mean 

(SD) 

t  

(df = 348) 
p 

Engagement Experime

ntal (XAI) 

4.12 

(0.66) 

8.32          < .001 

Control  3.51 

(0.74) 

Trust in 

System 

Experime

ntal (XAI) 

4.01 

(0.70) 

7.91 < .001 
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Control  3.37 

(0.81) 

 

 

Cognitive Load and Variability 

The thematic analysis highlighted issues 

related to cognitive load. While explanations 

increased transparency, some students found the 

information to be overwhelming. These results 

corroborate findings of the Cognitive Load 

Theory, which warns against overloading the 

working memory. Teachers emphasized the 

need to scaffold AI’s explanations to ensure 

pedagogical alignment with learner readiness. 

 

Cultural Adaptability and Sustainability  

Learners from different cultural and 

linguistic backgrounds responded differently to 

the system explanations. In particular, some 

have reported difficulty interpreting AI-

generated feedback when it relied on idiomatic 

expressions. This underscores the importance of 

cultural adaptability in XAI design, especially in 

under-resourced and multilingual contexts. 

 

Learner Autonomy and Personalization 

Despite the overall positive effects, 

variability emerged. Some learners perceived 

XAI explanations as overly complex, leading to 

confusion instead of clarity. Others relied 

excessively on AI recommendations instead of 

exercising independent judgment. These 

findings suggest that learner characteristics (e.g., 

prior knowledge and digital literacy) moderate 

the benefits of XAI. XAI features appear to 

support learner autonomy. Participants reported 

that system transparency made them feel more 

in control of their learning path. 

 

 

Summary of Key Findings 

Table 3 presents the mean post-test scores, 

engagement ratings, and trust ratings for the 

experimental (XAI-supported) and control 

groups, along with their associated p-values. It 

succinctly demonstrates that the XAI group 

outperformed the control group across all three 

measures, with statistically significant 

differences (p < .001). 

 
Table 3: Summary of Key Outcome Measures by 

Group 

Variable XAI 

Group 

Control 

Group  

(n = 175) 

p-

value 

(n = 

175) 

Post-test 

Score (Mean 

± SD) 

68.9 ± 

10.3 

60.7± 

11.4 

< .001 

Engagement 

Score (Mean 

± SD) 

4.12 ± 

0.66 

3.51± 

0.74 

< .001 

Trust Score 

(Mean ± SD)       

4.01 ± 

0.70 

3.37± 

0.81 

< .001 

These results underscore the potential of 

XAI-enhanced systems to promote trust, 

increase engagement, and improve academic 

performance in adaptive learning environments, 

especially in resource-constrained settings. 

The findings of this study demonstrate that 

integrating XAI features into adaptive learning 

environments significantly enhances learners’ 

trust, engagement, and performance. Students in 

the experimental group who interacted with the 

XAI-supported system achieved statistically 

significant post-test gains, confirmed by 

ANCOVA (η² = .08) and a repeated-measures 

ANOVA showing a significant group–time 

interaction, F(1, 348) = 35.62, p < .001, η² = 

.093. These effect sizes indicate a medium-to-

large impact, suggesting that XAI integration 

meaningfully contributes to learner 

performance. 

Beyond learning gains, learners in the XAI 

group reported greater trust and motivation, 

echoing prior studies that transparent AI systems 

foster perceptions of fairness and reliability 

(Luckin et al., 2023; Miller, 2019). However, 

variability emerged: while many learners found 

explanations empowering, others experienced 

cognitive overload when the explanations were 

too complex. This supports the Cognitive Load 

Theory and highlights the need for pedagogical 

alignment (Kabudi et al., 2021; Shute & Rahimi, 

2021).  

Importantly, this study illustrates the 

relevance of XAI in low-resource educational 

contexts. Unlike most existing studies situated in 

digitally advanced environments (Khosravi et 

al., 2022; Holstein et al., 2020), this study shows 

that XAI can be effective in settings 

characterized by limited infrastructure, 

multilingual classrooms, and large class sizes, 

conditions common in sub-Saharan Africa 

(Shin, 2020; Luckin et al., 2023). The findings 

also underscore the need for culturally 

responsive and adaptive explanations rather than 

generic outputs, reinforcing calls for 
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participatory and co-design approaches 

(Holstein et al., 2022; Holstein et al., 2020). 

Moreover, our findings extend prior work 

showing the role of formative feedback in 

supporting personalized learning. Learners in 

the XAI group reported stronger feelings of 

autonomy, as the explanations enabled them to 

monitor their progress and adjust their strategies 

accordingly (Poursabzi-Sangdeh et al., 2018; 

Shute & Rahimi, 2021). Nonetheless, the study 

acknowledges limitations: the short intervention 

period prevents firm conclusions about long-

term impacts, and the focus on learner-facing 

explanations leaves open questions about how 

teachers interpret and use XAI tools to mediate 

instruction in the classroom. Taken together, 

these findings indicate that when designed with 

pedagogical, cultural, and sustainability 

considerations, XAI can foster inclusive and 

effective educational practices, particularly in 

under-resourced regions. 

CONCLUSION 

The findings of this study provide empirical 

evidence that integrating XAI into adaptive 

learning environments significantly enhances 

learner performance, trust, and engagement. The 

experimental group achieved higher post-test 

scores than the control group, with medium-to-

large effect sizes (ANCOVA η² = .08; repeated 

measures ANOVA η² = .093), suggesting that 

XAI contributed meaningfully to the learning 

outcomes. Beyond academic performance, 

learners reported stronger motivation and trust 

when explanations made system 

recommendations transparent and interpretable, 

echoing prior studies on the benefits of 

explainability for fairness and reliability (Shute 

& Rahimi, 2021; Miller, 2019). 

Nevertheless, this study highlights some 

important challenges. Some learners 

experienced cognitive overload when presented 

with complex explanations, while others 

benefited disproportionately, reflecting 

variability in learner responses. These findings 

stress the importance of pedagogical alignment 

and scaffolding in the design of XAI tools. 

Moreover, cultural adaptability emerged as a 

key factor: explanations must be responsive to 

local linguistic and socio-economic contexts, 

particularly in under-resourced educational 

settings (Luckin et al., 2023; Shin, 2020). 

Sustainability concerns, such as limited 

infrastructure and teacher training needs, also 

limit the scalability of XAI in low-resource 

environments. By involving educators and 

learners in the co-design of the XAI interface, 

the study ensured that explanations were 

pedagogically grounded and contextually 

relevant, consistent with recommendations for 

participatory design in educational technologies 

(Khosravi et al., 2022; Holstein et al., 2020). 

This approach underscores the potential of XAI 

to bridge educational inequities when developed 

collaboratively and responsively. 

Future research could extend these findings 

through longitudinal studies to track trust and 

learning outcomes over time, and by exploring 

teacher-facing XAI features that support 

instructional decision-making. Additionally, 

examining strategies for scalable 

implementation in resource-constrained 

contexts will be critical to ensuring long-term 

impact. 

In conclusion, XAI holds considerable 

promise for transforming personalized learning 

by embedding explainability into adaptive 

systems, education can move closer to achieving 

equity, transparency, and effectiveness 

particularly in under-resourced contexts where 

the stakes for learner trust are highest when 

designed with pedagogical, cultural, and 

sustainability considerations, XAI can foster 

inclusive and effective educational practices, 

particularly in under-resourced regions. 
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