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ABSTRACT: The total energy calculations of structural and magnetic properties of a six atom supercell of pure, 

binary, tetragonal structure SnO2 at x =0 and twelve atom supercells of ternary transition metal oxides 

21 OSnCr xx   at x =0.25, 0.50, 0.75 and 1.00 were simulated using first-principles calculations within the 

framework of generalized gradient approximation (GGA) for spintronic utilities. Doping Cr with wide band gap 

SnO2 has the effect of transition from a non-mental to metallic state.The calculated magnetic moment at x = 0.25 is 

1.9976 B , x = 0.50 is 3.9309 B ,x=0.75 is 5.8831 B  and x=1.00 is 7.8271 B . The room temperature 

ferromagnetism attained in this study is apparent in Sn substitution with Cr atom. 
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1. INTRODUCTION 

Dilute magnetic semiconductor is a non-magnetic semiconductor doped with magnetic atoms most especially 

transition metals to induce magnetic and spin-polarized materials which exhibits both ferromagnetism and 

semiconductor properties. It’s of interest because of its functionality in the development of spintronic devices. The 

substituted Cr2+ ions has magnetic moment attribute into Sn2+ ions in 21 OSnCr xx  at various compositions; x=0.25, 

0.50, 0.75 and 1.00 respectively without having any negative consequence on the resulting structure of CrO2 at 

x=1.00. 

 

Tin oxide(SnO2) is a wide band gap semiconductor oxide and is useful in magnetic data storage and resonance 

imaging, photo catalyst (Pearton et. al., 2003), increase refractoriness (Jednak et al., 2011), electrodes and anti-

reflection coatings in solar cells (Wolf et al.,2001), manufacturing of gas sensors, optoelectronic devices and resistor 

(Al-Saadi et al., 2019), polishing powder, glass coatings and making of liquid crystal display and so on. 

 

Chromium(IV) oxide (CrO2) is metastable at room temperature and pressure and is of interest as a result of its 

potential usage in spintronic heterostructures, superconductor structures (Anwar et al, 2010), electronic storage 

device, catalyst and corrosion inhibition devices, magnetic heads and magnetic field sensors (Bate, 1978) polishing 

agents medicine, (Kurmaev et al., 2003) to mention a few. Transition metal oxide,SnO2doped with Cr atom finds 

usefulness in production of riboflavin biosensors (Lavanya, 2013), processing of pigments, gas sensors and optional 

applications. The spin and orbital magnetic moments of Cr and O in CrO2 usinglocal spin density approximation 

(LSDA) approach was reported (Jeng and Guo, 2002). The computed sub-lattice magnetic moment of Cr in rutile-

type CrO2of 2.04 µB was deducted (Huang et al., 2018). 

 

Ferromagnetism entails magnetic ordering in which the intrinsic magnetic dipole moment or spin of electrons on 

each crystal-lattice site all align in the same direction. The two unique features of ferromagnetic are: spontaneous 
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magnetization of which the total magnetization exists within a uniformly magnetized microscopic volume without 

the presence of a field and magnetic ordering temperature. Ferromagnets either possess strong attractive or repulsive 

forces in the presence of permanent magnet (Aibangbee and Onohaebi, 2018). Utilization of ferromagnetism are: 

data storage, electromagnets, magnetic tape recording and transformers (Hummel, 2013). 

 

There have been considerable studies of Cr doped semiconductor, SnO2both experimental and theoretical wise 

(Stashans et al., 2014, Kuppan et al., 2017, Mishra et al., 2015) with various methodologies (Abidi et al., 2013, Leite 

et al.,2005 and Kasar et al., 2013). Albeit, there is need to study the effects of chromium doped semiconductor 

material SnO2at x=0.25, 0.50, 0.75 and 1.00 using PBE-PAW technique and density functional theory based so as to 

understand its structural and room temperature magnetic properties as an effective gas sensor on ceramic materials. 

 

2. COMPUTATIONAL DETAILS AND THEORETICAL BACKGROUND 

The appraisals of this study were actualized by using Perdew-Burke- Ernzhof Projected Augmented wave within the 

framework of Generalized Gradient Approximation (GGA) based density functional theory and Perdew-Burke- 

Ernzhof Projected Augmented Wave (PBE- PAW) technique (Ayedun et al., 2017). The PBE- PAW approach is 

preferred in this work because it enhances adequate and accurate facts about equilibrium state, structural 

minimization, response, spectroscopic and magnetic properties of crystalline structures and so on. Also, PBE- PAW 

technique (Perdew et al., 1997) is time and cost effective, accurate pseudopotential libraries are highly available and 

accessible in the Quantum Espresso package (Giannozzi et al., 2009). 21 OSnCr xx   retainsits crystalline tetragonal 

structure from compositions x = 0 to 1. The details of volume (V)-energy (E) were fixed in the second –order Birch-

Murnaghan equation of state (Birch, 1994; Murnaghan, 1994) and minimized lattice parameters a and c (since a = b, 

but b c) at room temperature were examined. 
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The plane wave cut-off energy is set at 80 Ry for a K- mesh of 10 x 10 x 5 for a pure six atom supercell, SnO2. The 

Monkhorst – Pack (Monkhorst and Park, 1976) K-meshes of 10 x 10 x 5, 8 x 8 x 4, 10 x 10 x 5 and 10 x 10 x 5 for a 

twelve atom supercell built and kinetic energy of 90 eV each were set at x = 0.25 to 1.00 respectively.  Self 

consistent relaxation of atomic positions were quantumly simulated and the optimized energy converged to 0.01 

milli electronVolt (meV) at each concentration x in respect of Brillouin zone and cut – off energy. Comparison is 

made with existing experimental and theoretical works via calculations performed in non-defective SnO2 at x = 0 

and doped ternary compounds of  21 OSnCr xx   at x = 0.25 to 1.00, with minimized structural parameters of a and c 

as indicated in Table 1. 

 

 



JOSIT 17(1)  Ayedun. 2022 

 

Journal of Science and Information Technology, Vol. 17, No. 1  38 
 

 

Table 1: Optical lattice parameters of 21 OSnCr xx   compound. 

Parameter(Å) Present Study Existing Works 

  Experimental Theoretical 

a 4.7358 4.743, 4.7202, 4.7471 4.8959, 4.780 

c 3.1853 3.2070, 3.200 3.30371, 3.268 
 

The values of optimized lattice parameters enlisted in Table 1 are in conformity with existing experimental and 

theoretical studies (ESI, 2013). 

 

3. RESULTS AND DISCUSSION 

3.1 Structural Properties 

The pattern of undoped (six atoms supercell), binary rutile SnO2 and doped ternary transition metal oxides (twelve 

atoms supercell) 21 OSnCr xx   at concentrations x = 0.25 to 1.00 remains tetragonal rutile body centered cubic 

structure. The details of volume (V) – Energy (E) were imputed in the second order Birch- Murnaghan equation of 

state (Birch, 1947; Murnaghan, 1947) and minimized lattice parameter a, bulk modulus B and pressure derivative B’ 

at room temperature were determined.  Vegard’s law examined the rules of mixture using lattice parameter of a solid 

solution of two constituents A and B at constant temperature and uniform crystal structure. This law is not limited to 

only pure binary solid solution A and B, it is also applicable to ternary transition metallic oxide, 21 OSnCr xx  . The 

lattice parameter as attested by Vergard’s law is: 

 

   2,)1(1 BCACxx axaxCBAa   

herein, ACa  and BCa are  the equilibrium  lattice constants of CrO2, SnO2 and   CBAa xx 1   is  the ternary 

compound lattice constant, x is the molar fraction of Cr in  SnO2 for 10  x . Because of lack of compliance to 

Vergard’s law in semiconductors both theoretical (Ayedun, 2017, Abdiche, 2010) and experimental works (Gu et 

al., 2007; Wei et al., 2020;Savidan et al., 2010) can now be written as: 

 

     3,1)1(1 bxxaxaxCBAa BCACxx   

 

where b stands for bowing constant.The substitution of Sn with Cr atoms at x =1, results into mini overvalue of 

lattice constant and a better transition compound produced. The lattice parameter of undiluted SnO2 at x = 0(4.7358 

Å) and that of alloyed transition metal oxide at x =1(4.6442 Å) are very close as revealed in Table2. 

 

 

 

Table 2: Lattice parameter a, bulk modulus B and pressure derivative B’ of 21 OSnCr xx   compound 
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Nomenclature Parameters Present Study Experimental 

Values 

Theoretical Data 

SnO2 A (Å) 

B (GPa) 

B’ (GPa) 

4.7358 

413.0 

9.63 

4.743, 4.7202277 

2.0 

4.8959, 4.780312 

 

Cr0.25Sn0.75O2 A (Å) 

B (GPa) 

B’ (GPa) 

4.7834 

577.1 

15.0 

 

- 

 

- 

Cr0.50Sn0.50O2 A (Å) 

B (GPa) 

B’ (GPa) 

4.7777 

663.2 

15.0 

 

- 

 

- 

Cr0.75Sn0.25O2 A (Å) 

B (GPa) 

B’ (GPa) 

4.7305 

907.7 

14.48 

 

- 

 

- 

CrO2 A (Å) 

B (GPa) 

B’ (GPa) 

4.6442 

660.1 

3.62 

4.421 

239 

 

4.384, 4.459 

237.7 

 

 

The component of chromium compositions modification with lattice constant and bulk modulus were considered. 

The calculated optimized lattice constants were plotted against chromium compositions(x) in Figure 1. As the 

chromium dopant increases from x = 0 to 1.00, the downward bowing constant of ternary compound 21 OSnCr xx   

is -0.34.  The difference in lattice constant at x = 1(4.6442 Å) compared with that of existing theoretical data (4.384 

Å and 4.459Å)by Srivastav et al., 2008 and Huang et al., 2018  respectively, depicted in Table 2 is as aresult of 

GGA artefact used. 

Figure 1: Lattice constant of 21 OSnCr xx   as function of chromium composition (x) 

 

The bulk modulus varies with rising chromium composition from x = 0.25 to 0.75 and decrease to 660.1 GPa at x = 

1.00 as indicated in Figure 2. The increase in bulk modulus is due to the fact that GGA has tendency to overestimate 

and the bulk modulus bowing constant is -0.90. 
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Figure 2: Bulk modulus of 21 OSnCr xx   as function of chromium composition (x) 

 

3.2Magnetic Properties 

Magnet has the capacity to create magnetic field. Magnetic field is produced as much as orbits are set in motion as 

well as there exist the spinning of electrons. The three major types of magnet are electromagnet, permanent magnet 

and temporary magnet. The feature of magnet comprises of its attractive property, directive property, pair property 

to mention a few. Magnets are grouped into diamagnetic, paramagnetic, ferromagnetic, ferrimagnetic 

antiferromagnetic. The magnitude of magnetic moment which quantifies the magnetic properties of material is a 

function of an unpaired electron. At x = 0, SnO2is diamagnetic because both Sn2+and O2- are paired and the net 

magnetic field effect is zero (Wang et al., 2010). The outer valence electrons;  2210 554 psdSn , 

 462 333 dpsCr ,  42 22 psO  which are unpaired enhanced increase in magnetic moment as dopant atom, 

chromium increases from x = 0.25 to 1.00. The bulk magnetic moment of 21 OSnCr xx   compounds were examined 

at x =0 to x = 1.00 as shown in Table3. 

 

Table 3: Magnetic moment of 21 OSnCr xx   compound in B . 

Composition (x) Nomenclature Present study Experimental Theoretical 

0 SnO2 0 0 0 

0.25 Cr0.25Sn0.75O2 1.9976 - - 

0.50 Cr0.50Sn0.50O2 3.9309 - - 

0.75 Cr0.75Sn0.25O2 5.8831 - - 

1.00 CrO2 7.8271 - 9.0 

 

Magnetic moment increased linearly with risen chromium atom substitution as displayed in Figure 3. A weak 

ferromagnetic (1.9976 B ) was observed at x = 0.25 and a strong ferromagnetic material emerged at x = 1(7.8271

B ). 
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Figure 3: Magnetic moment of 21 OSnCr xx   as function of chromium composition (x) 

 

4. CONCLUSION 

Cr atom was substituted into 21 OSnCr xx   ternary compound at various composition x = 0 to 1.00 using PBE-

PAW approach. The addition of the dopant increased the lattice parameter, enhanced the pressure as well as the bulk 

modulus. It influenced the phase transition from nonmagnetic material SnO2 to room temperature ferromagnetic 

system at x = 0.25 to 1.00 without distortion to its tetragonal rutile structure. The researchers are recommended to 

experimentally work on the bulk magnetic moment of SnO2 with transition metals using various methodologies. 
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