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Abstract  

The investigations on asymptotic, semi-analytic, and numerical methods, techniques, and algorithms cannot be 

overemphasized or exhaustive in the field of applied sciences; while several notable equations that arise in 

engineering and the applied sciences in general, from several works of literature, needs to be solved and simulated 

to enable accurate forecasting, also study the dynamical behaviour of the system or model. In this regard, a solitary 

wave solution has been obtained to the real-valued stochastic Ginzburg-Landau (G-L) equation forced in the Ito 

sense by a multiplicative parameter in this paper by merging a very recent Zainab-Mohammed-Alwan (ZMA)) 

integral transform with the projected differential transform. When this noise parameter takes an arbitrary and zero 

value, the results via tables and graphical illustrations demonstrate remarkable convergence to the exact solution 

as appeared in the pieces of literature. The dynamical behaviour investigation of the system via parameter effect 

plots also demonstrates an increase in the concavity and superposition for each increase in the noise parameter. 

Inevitably, this method has been confirmed to be a perfect asymptotic alternative for solitary wave solutions 

through hybrid algorithms on stochastic differential equations and wider classes of differential equations (partial 

and ordinary), as the results proffered by this proposed method appear to be rapidly convergent compared to 

analytical and exact solution achieved in published literature. 

 

Keywords: Stochastic differential equations, Ginzburg-Landau equations, ZMA transform, Modified differential 

transform, Convergence, Hybrid scheme 

 

INTRODUCTION 

Several models have been built over the 

years in prominent works of literature 

describing cogent phenomena and processes 

with the aid of differential equations. Yet, 

research in differential equations and methods 

of solution cannot be overemphasized as a 

general panacea to all problems encountered. 

Finding an accurate solution to models, whether 

they are linear or nonlinear, is one of the most 

challenging issues in computational 

mathematics, numerical analysis, and applied 

sciences. As a result, it is simpler to analyze and 

comprehend the dynamical behavior or pattern 

of models displayed (Loyinmi & Ijaola, 2024; 

Loyinmi & Akinfe, 2020). A differential 

equation usually links a function with its 

derivative, parameters, and under specific 

conditions, depending on the system or model 

being described. These functions serve to 

represent physical quantities in applications, 

whereas derivatives serve to indicate the rates 

of change, and the equation ultimately 

establishes the connection between these two 

(Loyinmi & Gbodogbe, 2024; Loyinmi & 

Idowu, 2023). 

The evolution of computational 

mathematics as regards the development and 

erection of notable schemes, methods, and 

algorithms has caused a turnaround for this 

particular field and, in fact, made research in 

this field more interesting and worthwhile. Yet, 

it is important to still emphasize the 

development or invention of more schemes, as 

no single method is a panacea for solving all 

models developed. This is why it is paramount 

to check for the reliability and validity of some 

methods over others using some convergence 
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checks as carried out by some authors 

(Loyinmi, 2024; Loyinmi & Akinfe, 2021) to 

confirm the validity and reliability of the hybrid 

technique implemented in their work (Loyinmi 

& Akinfe 2020b; Singh and Sharma, 2018; 

Agbomola & Loyinmi 2022b; Loyinmi, 2024; 

Necdet, 2017). 

Unlike an ordinary differential equation 

(ODE), which is an equation composed of 

functions of single variables with their total 

derivatives, a partial differential equation 

(PDE) has many independent variables and a 

dependent variable with partial derivatives. Due 

to this, if we study a phenomenon that is 

dependent on time and a single variable, such 

as population dynamics through time as 

examined in Loyinmi, A.C., and Akinfe, T.K. 

(2021) (Loyinmi et al 2021; Agbomola & 

Loyinmi 2022a; Loyinmi & Gbodogbe 2024; 

Loyinmi et al 2023; Akinfe & Loyinmi 2021), 

a pendulum's oscillation for a predetermined 

amount of time, and so forth; the formulation of 

an appropriate model for these events uses the 

ordinary differential equation (linear or 

nonlinear). Conversely, the partial differential 

equation comes into play when a phenomenon, 

like the flow of a fluid in a channel, has multiple 

variables, including time. These variables 

include the fluid's temperature, viscosity, 

pressure, and the physical properties of the 

channel (Deniz 2013; Akinfe & Loyinmi 2022; 

Aziz et al, 2017; Mittal & Rajni 2016; Loyinmi 

& Idowu 2023; Loyinmi & Lawal, 2011). As 

the case may be, nature's dynamics are quite 

complex, and virtually all described phenomena 

in science and engineering have been translated 

into nonlinear differential equations (Loyinmi 

& Oredein, 2011). 

As a result, partial and ordinary differential 

equations—especially the nonlinear 

equations—have drawn the attention of 

numerous mathematicians and applied 

scientists. Over the years, numerous techniques 

such as the Taylor collocation method, wavelet 

collocation method, differential quadrature 

method, the method of homotopy analysis 

(HAM), new iterative method (NIM), the 

method of Sumudu decomposition (SDM), the 

method of Elzaki decomposition (EDM), the 

method of perturbation iteration (PIM), 

variational iteration method (VIM), the method 

of Adomian Decomposition (ADM), the 

method of Elzaki homotopy transformation 

perturbation (EHTPM), the 

'G

G

 
 
 

expansion 

method, fractional iteration algorithm, the tanh-

coth method, reproducing Kernel method, the 

tanh-sech method, Conjugate gradient method, 

Jacobi elliptic function method, the simplified 

bilinear method and so on, have been developed 

in the publications to solve nonlinear partial 

differential equations such as the Stochastic 

Ginzburg-Landau (G-L) equation, (Loyinmi & 

Akinfe 2020; Akinfe & Loyinmi 2021; Lot et 

al. 2024; Idowu & Loyinmi 2023a; Idowu & 

Loyinmi, 2023b; Rajarama et al. 2019; Loyinmi 

et al. 2017, Mehmet & Timucin 2016). It is well 

known that finding precise solutions to these 

nonlinear partial differential equations can be 

challenging. As a result, these equations require 

greater consideration and care when developing 

and putting into practice a suitable approach, 

scheme, method, or algorithm to solve them. 

Apart from established single asymptotic 

methods in the literature, some researchers have 

also found it appropriate to combine two 

effective techniques to create hybrid algorithms 

that improve the convergence of solutions 

obtained depending on the nonlinearity of the 

problem in question (Akinfe & Loyinmi, 2022; 

Idowu & Loyinmi, 2023b). 

Few years back, Akinfe T.K. and Loyinmi, 

A.C. (2021) made a ground-breaking 

advancement by using their hybrid scheme 

(Elzaki integral transform coupled with an 

improved differential transform) to obtain the 

exact solution of the nonlinear Burgers-

equation for Fisher's with all equation 

parameters remaining unchanged (solitary 

wave solutions) (Loyinmi & Lawal 2011; 

Loyinmi et al. 2018; Abdulghafor & Al-

Rozbayani 2014, Zhaojuan & Shengfan 2015; 

Zainab, 2021). Additionally, convergence 

graphs that showed the fluid-like behavior of 

the equation when simulated were used to 

assess the validity, dependability, and 

authenticity of this method. This backed up the 

outcomes attained by employing this hybrid 

approach.  

Loyinmi Adedapo and Akinfe Timilehin K. 

(2020) (Idowu & Loyinmi 2023; Abdulghafor 

& Al-Rozbayani 2014; Lui, 2017; Lawal et al. 

2018; Lawal et al. 2017; Ning Li et al, 2015; 

Yasir Khan & Qingbiao, 2011; Loyinmi & 

Akinfe 2020a) developed an algorithm utilizing 

the Elzaki transform to give precise solutions to 

the Burgers-Huxley equation in three separate 
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cases as a result of alterations in the equation's 

parameters. Furthermore, they employed a 

hybrid approach in (2019) that combined the 

homotopy perturbation method (EHTPM) with 

the Elzaki transform to produce accurate 

solutions for the Fisher family of reaction-

diffusion equations (Loyinmi & Akinfe, 

2020b). 

Up till the 1950s, deterministic differential 

equation models were frequently utilized in 

implementations to characterize the system 

dynamics (Zainab 2021b; Lawal et al. 2017; 

Wael et al. 2021a; Wael et al. 2021b; Lawal & 

Loyinmi, 2012; Roger, 1988; Lawal et al, 2019, 

Bongsoo, 2010; Tarig, 2014; Loyinmi et al., 

2017b). The phenomena that exist in the world 

today, however, occasionally fail to be 

deterministic in nature. 

Furthermore, real-world stochastic 

disruptions arise from various unidentified 

sources. Noises affect statistical features and 

important phenomena; hence they shouldn't be 

ignored. Consequently, more precise 

mathematical representations of real events are 

produced in the form of stochastic differential 

equations. 

In this paper, we shall also implement our 

recent novel hybrid algorithm that involves the 

combination of an integral transform and an 

improved differential transform in a more 

modified form as an improved version of the 

Elzaki transform called the ZMA transform 

introduced in October 2021 (Zainab, 2021b) 

shall be merged with the projected differential 

transform (PDTM), viz: the Modified Projected 

Differential Transform Method (MPDTM), to 

obtain an asymptotic solution to the real-valued 

stochastic Ginzburg-Landau (G-L) equation 

forced in the Ito sense. 

In the subsequent sections, we shall 

illuminate the theory of the Ginzburg-Landau 

(G-L) equation, the real-valued G-L equation, 

the complex G-L equation, and the real-valued 

stochastic G-L equation in Section 2, and the 

concepts of the Weiner process (Brownian 

motion process), the Zainab-Mohammed-

Alwan transform, and the PDTM shall be 

elucidated in Sections 2, and 3.  

The demonstration of the suggested 

MPDTM on the generalized nonlinear partial 

differential equation, the main application of 

the MPDTM (Idowu & Loyinmi 2023a) to the 

real-valued stochastic Ginzburg-Landau 

equation with the multiplicative noise 

parameter, the results via tables with graphical 

illustrations and the discussion of the findings 

will be discussed in Sections 2.8, 2.9 to 2.11 

and 3. 

In conclusion, Section 8 of this research 

supports the investigation's result and offers a 

potential proposal in this field of knowledge. 

 

MATERIAL AND METHOD 

The theory of the Ginzburg-Landau 

Equation 

The Ginzburg-Landau (G-L) equation, 

which bears the names of Vitaly Ginzburg and 

Lev Landau (2002), is a nonlinear differential 

equation derived from mathematical physical 

theory that has been employed in science and 

engineering to explain and model a wide range 

of processes. 

In its initial form, the G-L equation was 

proposed as a phenomenological model for 

superconductivity, which might explain type-I 

superconductors without taking into account 

their microscopic features. Ginzburg and 

Landau argued that the free energy, F , of a 

superconductor close to a superconducting 

transition can be represented in relation to a 

complex order parameter field denoted by (1) in 

an attempt to establish the second-order phase 

transition theory Landau. 

 

( ) ( ) ( )i r
r r e


 =    (a) 

 

Despite the fact that no direct interpretation 

of this parameter was provided in the main 

paper, ( )
2

r   is a measure of the local density 

here in equation (a) and ( )r  is a nonzero 

below a phase transition into a superconducting 

state, much like a quantum mechanics wave 

function.  

The free energy, F, has a field theory form 

provided by equation (b) under the assumption 

that )(r and its gradients are small.  

( )
2

22 4

0

1
2

2 2 2
k

B
F F i eA

m


   


= + + + − − +

      

  

(b) 

 

kF is the free energy in the normal phase, 

 and  in the inceptive agreement were 

treated as phenomenological parameters, m is 

an effective mass, e is the charge of an electron, 
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A is the magnetic vector potential and 

B A= is the magnetic field. 

We can write the equation (b) concisely and 

arrive at the Ginzburg-Landau equation by 

minimizing F with respect to changes in the 

order parameter and the vector potential as:  

 

( )

( ) 

22

0

*

1
2 0

2

,

2
j Re 2

i eA
m

B j

e
i eA

m

    



 

+ + − − =

 =

= − −

(c) 

 

Here in (c), j  
represents the dissipation-

less electric current density and Re the real 

part. The first equation and the time-

independent Schrodinger equation are alike in 

many ways but the nonlinear term (determines 

the order parameter ) primarily sets it apart. 

The second equation then provides the 

superconducting current. 

 

The real-valued Ginzburg-Landau Equation 

The nonlinear heat equation, also known as 

the real-valued Ginzburg-Landau (G-L) 

equation can be found in a variety of physics 

and chemistry contexts. The real G-L equation 

was first referred to as a long wave amplitude 

equation in the context of pattern formation in 

relation to convection in binary mixtures close 

to the onset of instability (National Center for 

Biotechnology and information, 2022; Wael et 

al., 2021b, Idowu et al 2023; Roger 1988; 

Lawal et al. 2019, Zhaojuan & Shengfan, 

2015). 

The real Ginzburg-Landau equation 

(RGLE) is of the form: 

 

( )tu N u =   ( , )u u x t=           (1) 

Our focus in this research work is on the 

RGLE in the stochastic form forced in the Ito 

sense for N , a nonlinear operator that depends 

on some control parameter . 

 

The complex Ginzburg-Landau Equation 

The studies of Poiseuille flow and reaction-

diffusion systems are where the complex G-L 

equation was first discovered. The G-L 

equation is complex and has the form: 

 

( ) ( )
2

2

2
1 1

M M
i M i M M

t x
 

 
= + + − +

         
(2) 

The solution to the equation (2) can be 

expressed as: 

( )

( ) ( ) ( )

0

*

,

, ,

c c

c c

ik x i t

ik x i t

U u M x t e

M x t e O x t





+

− +

= +

+ +
 (3) 

Here,  and  are the parameters. 

It would interest you to take note that the 

real-valued G-L equation is simply a special 

case of the complex G-L equation with 

0 = = to be:  

2
2

2

M M
M M M

t t

 
= + −

 
            (4) 

 

Also, in the limit case ,  → , the 

complex G-L equation reduces to the Nonlinear 

Schrodinger equation which possesses known 

soliton solutions. 

 

The real-valued stochastic Ginzburg-

Landau Equation 

In this research work, we are concentrating  

on implementing a modified differential 

transform algorithm coupled with an improved 

integral transform viz: ZMA transform on the 

real-valued Ginzburg-Landau equation with the 

multiplicative noise parameter, forced in the Ito 

sense coupled with a stochastic parameter
t . 

Mathematically, the real-valued Ginzburg-

Landau equation as expressed in (4) is given as: 
2

2

2

u u
u u u

t t

 
= + −

 
                (5) 

 

While the stochastic real-valued G-L 

equation forced in the Ito sense by a 

multiplicative noise is given as: 
2

2

2 t

u u
u u u u

t t


 
= + − +

 
               (6) 

Here, t

d

dt


 = is a standard Wiener process 

and the equation being stochastic implies 

random fluctuations of the system has been 

considered as a stochastic equation considers 

random fluctuations depending on time. 
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The Wiener Process 

The Wiener process is a continuous time 

stochastic process with real values that bears 

the name of an American mathematician by the 

same name who conducted research on the 

mathematical characteristics of Brownian 

motion in one dimension. Both pure 

mathematics and applied mathematics rely 

heavily on this process. Pure mathematics’ 

investigation of continuous time martingales 

was sparked by the Wiener process. 

It is a crucial process that allows for the 

description of more complex stochastic 

processes. As a result, while it is driving 

process Schramm-Loewner evolution, it also 

plays a crucial role in stochastic calculus, 

diffusion processes, and even potential theory. 

The Wiener process can be used as a model of 

noise in electronics engineering because it can 

be used to represent the integral of a white noise 

Gaussian process in applied mathematics. For a 

standard Wiener process ( )t  on the interval 

 0,T that depends continuously on  0,t T , 

satisfies the following: 

( )0 0 =  

For 0 s t T   , then, 

( ) ( ) ( )~ 0,1t s t sN − −   (7) 

Here in (7), ( )0,1N is a normal distribution 

with mean zero and unit variance. 

For, 0 s t u v T     ,then, ( ) ( )t s −

and ( ) ( )v u − are independent. The Wiener 

process with a time step dt is discretized as: 

( )~ 0,1d dt N  

Very recently, in Wael W. Mohammed et. 

al (2021) using the tanh-coth method, exact 

solution had been obtained to the real-valued 

stochastic Ginzburg-Landau equation in (6) 

above as: 

 

( )
( ) 2

2

2

1 2 1
1

, 2 1 3
2 tanh

8 2

t t
u x t e

x t

 




 −
 

 + +
 

=   +  
+   

     

(8) 

 

In (8), for the multiplicative noise 

parameter 0 = , we obtain  

( )
1 3

, 1 tanh
2 42 2

x
u x t t

  
= + +  

  
 (9) 

 

We shall study the variations in the two 

solutions via obtained results and graphical 

illustrations in the quest of this research work. 

From the equation (8), we can obtain the initial 

condition for 0t = as: 

 

( )
( )

( )

2

0
2

1 2 1
1

,0 2 1
2 tanh

8

u x e
x






  

 + +
 

=   +
  
    

 (10) 

     (10) 

And from the properties of the Wiener 

process, ( )0 0 = , and consequently, we 

obtain our new initial condition to be: 

 

( )
2

21 2 1
,0 1 2 1 tanh

2 8
u x x




  +
 = + +  
    

 

(11) 

For easy computation of our solution terms, 

we can re-write our initial condition in equation 

(11) above in exponential form as the function 

obtained is hyperbolic as: 

 

( )

( )

( )

2

2

2 2

2 1

2 2 2

2 1

2 2 2

2 1 2 1

2 2 2 2

1
1 2 1

2

1
1 2 1

2,0

x

x

x x

e

e

u x

e e





 





+

+
−

+ +
−

+ +

+ − +

=
 
 +
 
 

 (12) 

 

The Zainab Mohammed Alwan (ZMA) 

integral transform 

The well-known Laplace transform which 

has been utilized effectively for the solution of 

ordinary and partial differential equations 

(Zainab, 2021; Zainab, 2021b) and the Elzaki 

transform have been modified to create the 

ZMA transform. The ZMA transform integral is 

of the form: 

( ) ( )  ( )
0

1
, ,

t

s
ma maZ v s Z t v t e dt

s
 


−

= = 
   

(13) 
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Here, ( )t is a function defined for all 0t 

and equation (13) remains valid if the integral 

at the right-hand side exists. 

Thus, the inverse ZMA transform of the 

equation (13) is given as: 

 

( ) ( ) 1 ,ma mat Z Z v s −=   (14) 

 

Alternatively, we can express the ZMA 

transform in equation (13) as: 

 

 ( )  ( )
0

1
t

sv
maZ t t e dt

sv
 


−

=    (15) 

The transform of derivatives using 

integration by parts gives; 

 

( ) ( )
1 1

, ,0ma ma

u
Z Z v s u x

t sv sv

 
= −  

 (16) 

( )
( )'

,0
,

ma

ma ma

dZ Xu
Z Z v s

x dx

 
= =  

 (17) 

 

And subsequently, higher order derivatives 

are given generally by mathematical induction 

as: 

( )

( )1

0

1
,

,01

n

ma man n n

nn

n k n k n
k

u
Z Z v s

x s v

u x

s v t

−

− −
=

 
= 

 


−


     

(18) 

( )
( ),0

,

nn
man

ma man n

d Z Xu
Z Z v s

x dx

 
= = 

   

(19) 

 

The projected differential transform 

The projected differential transforms as 

discussed in the previous write ups (Deniz, 

2013; Tarig 2014) is a modified version of the 

differential transform method; able to treat 

highly nonlinear differential equations to 

provide highly convergent results (Bongsoo 

2010; Loyinmi et al, 2017b). 

 

Definition: The projected differential 

transforms ( )kXU , of ( )tXu , with respect to 

the variable t at 0t is defined by: 

( ) ( )
0

,
!

1
,

tt

k

k

tXu
tk

kXU

=













=    (20) 

( )nxxxxX ,,,, 321 =  

where ( )tXu ,  is the function, whose solution 

is desired from the problem and ( )kXU , is the 

transformed function of ( )tXu , . 

The inverse transforms of ( )kXu , with 

respect to the variable t at 0t is defined by: 

( ) ( )( )


=

−=
0

0,,
k

k
ttkXUtXu  (21) 

Combining equations (20) and (21) gives: 

( ) ( ) ( )


= =

−











=

0

0

0

,
!

1
,

k

k

tt

k

k

tttXu
tk

tXu (22) 

The above definitions lead to the 

fundamental operations of the PDTM given by 

theorem 4.2. 

 

Theorem: Let ( )kXP , , ( )kXQ , , and 

( )kXR , be the projected differential 

transforms of the functions ( )tXp , , ( )tXq , , 

and ( )tXr , respectively, with 

( )nxxxxX ,,,, 321 = , then 

 

Linearity Property of PDTM 

If ( ) ( ) ( )tXqtXptXr ,,,  += , then 

( ) ( ) ( )kXQkXPkXR ,,,  +=  with  and 

 as constants 

 

PDTM of Products 

If ( ) ( ) ( )tXqtXptXr ,,, = ,then 


=

−=
k

kXQXPkXR
0

11

1

),(),(),(


  

 

PDTM of Multiple Products 

Suppose we have three or more functions to 

be transformed such that: 

( ) ( ) ( ) ( ) ( ) ( )tXptXptXptXptXptXr n ,,,,,, 4321 = 

, 

Then 

( )

( ) ( )

( )

( ) ( )

1 2 3 2

1 2 3 2 1

1 1 2 2 1

0 0 0 0 0

2 2 3

1 1 2 1

,

, ,

,

, ,

n n

n n n

k k k kk

k k k k k

n n n

n n n n n

R X k

P X k P X k k

P X k k

P X k k P X k k

− −

− − −= = = = =

− − −

− − − −

=

−

  −

− −

   
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PDTM of time derivatives 

If ( ) ( )tXp
t

tXr
n

n

,,



= , then 

( ) ( )( ) ( ) ( )nkXPnkkkkXR ++++= ,21,   

( )
( )nkXP

k

nk
+

+
= ,

!

!
,  ,3,2,1n . 

 

PDTM of space derivative 

If ( ) ( )txxxxp
x

tXr nn

i

n

,,...,,,, 321



= , then  

( ) ( ),,,...,,,, 321 kxxxxP
x

kXR nn

i

n




=

 ni ,...,2,1 , 
 ,...2,1n . 

PDTM for the product of variables and time 

with indices 

If ( ) mntxxxxtXr n

 321

321, = , 

Then 

( ) ( )=−= mmn kxxxxkXR n  321

321,

 
mmn kxxxx n 

=,321

321   

     

 0 , otherwise 

PDTM for the product of variables, 

problem function, and time 

If ( ) ( )tXutxxxxtXr mn

n ,, 321

321

 = , then, 

( ) ( )nkXUxxxxkXR n

n −= ,, 321

321

  . 

 

Implementing the proposed “modified 

projected differential transform” (mpdtm) 

scheme on the generalized nonlinear partial 

differential equation 

Let us consider a nonlinear partial 

differential equation of the form 

( ) ( ) ( ) ( ), , , ,Du x t Ru x t N x t g x t+ + = , 

given ( ) ( ),0u x h x=              (23) 

In this case, D is a linear differential 

operator of order 2, R is linear differential 

operator of order less than D , N is the general 

nonlinear differential operator, and, ( ),g x t is 

the source term or analytical function that 

controls the homogeneity of the equation (23). 

Taking the ZMA transform of the equation (23) 

gives: 

( ) ( )

( )
( ) 

, ,
,

,
ma ma

Du x t Ru x t
Z Z g x t

N x t

 + 
= 

+  
(25) 

From the equation (25) we have: 

( )  ( ) 

( ) ( ) 

, ,

, ,

ma ma

ma

Z Du x t Z g x t

Z Ru x t Nu x t

=

− +              
(26) 

By implementing the properties of the ZMA 

transform appropriately as clarified in the 

equations (16)-(19) and simplifying 

accordingly, we obtain: 

        

( )
( )

( )

( )

( )

( ) 

( ) ( ) 

2 2

,01 1
,

1
,0

,

, ,

ma

ma

ma

u x
Z v s

tsv sv

u x
sv

Z g x t

Z Ru x t Nu x t


−



− =

− +

(27)

 

By multiplying through by ( )
2

sv and re-

arranging equation (27) appropriately, we 

obtain: 

( )
( )

( )

( ) 

( ) ( ) 

,0
, ,0

,

, ,

ma

ma

ma

u x
Z v s sv u x

t

sv Z g x t

sv Z Ru x t Nu x t


 = +  

 +  

 − + 

 (28) 

Let 
( )

( )
,0u x

f x
t


=


and since 

( ) ( ),0u x h x= , we plug it into equation (28) 

above and obtain the following as: 

 

( ) ( ) ( )

( ) 

( ) ( ) 

,

,

, ,

ma

ma

ma

Z v s f x sv h x

sv Z g x t

sv Z Ru x t Nu x t

 = + + 

 
 

 − + 

 (29) 

 

The inverse ZMA transform of the equation 

(29) is; 

( )
( ) ( )

( ) 

( )

( )

1 1

1

,
,

,

,

ma ma ma

ma

ma ma

f x sv h x
Z Z v s Z

sv Z g x t

Ru x t
Z sv Z

Nu x t

− −

−

  +  
   =    +   

   + 
 −   
      

 

Thus, 

( ) ( )

( ) ( ) 1

, ,

, ,ma ma

U x t x t

Z sv Z Ru x t Nu x t



−

= −

  +  

 (30) 
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Here in (30), ( ),x t represents the term arising 

from the source term ( ),g x t and the given 

initial conditions. 

The next algorithm is for us to implement 

the PDTM on equation (30), taking the 

properties of PDTM into consideration to have: 

( ) ( )

( ) ( ) 1

, 1 ,

, ,ma ma

U x k x t

Z sv Z Ru x k Nu x k



−

+ = −

  +  

 (31) 

 

From equation (31), we iterate 

systematically to obtain the solution terms of 

the nonlinear partial differential equation of 

(23) 

( ) ( )0 , ,u x t x t =    (32) 

For 0k = , equation (31) becomes  

( ) ( ) ( ) 1,1 ,0 ,0ma maU x Z sv Z Ru x Nu x−   = − +  

                              (33)

      

And subsequently,  

( ) ( ) ( ) 1, 2 ,1 ,1ma maU x Z sv Z Ru x Nu x−   = − +  

 ( )1k =     (34) 

( ) ( ) ( ) 1,3 , 2 , 2ma maU x Z sv Z Ru x Nu x−   = − +  

 ( )2k =    (35) 

( ) ( ) ( ) 1, 4 ,3 ,3ma maU x Z sv Z Ru x Nu x−   = − +  

 ( )3k =    (36) 

 

( ) ( ) ( ) 1, 1 , ,ma maU x n Z sv Z Ru x n Nu x n−   + = − +  

       (37) 

Hence, the solution of the nonlinear differential 

equation (23) is given by: 

( ) ( )
0

, ,
n

k

U x t u x k
=

=    (38) 

Equation (38) results into a multivariate Taylor 

series that rapidly converges to the exact 

solution. 

 

 

 

 

 

 

 

 

The application of the modified pdtm scheme 

on the real-valued stochastic Ginzburg-

Landau equation with multiplicative noise 

parameter 

Consider the real-valued Ginzburg-Landau 

equation forced in the Ito sense by 

multiplicative noise as elucidated in equation 

(6), section 2 as: 
2

3

2 t

u u
u u u

t x


 
= + − +

 
           (39) 

Subject to the initial condition 

( )

( )

( )

2

2

2 2

2 1

2 2 2

2 1

2 2 2

2 1 2 1

2 2 2 2

1
1 2 1

2

1
1 2 1

2,0

x

x

x x

e

e

u x

e e





 





+

+
−

+ +
−

+ +

+ − +

=
 
 +
 
 

 (40) 

 

To ease our computation and avoid 

cumbersomeness, let 
22 1 m + = and 

22 1

2 2
p

 +
= which in turn miniaturizes our 

initial condition in (35) as: 

( )
( ) ( )

( )

1 1
1 1

2 2,0

px px

px px

m e m e

u x
e e

−

−

+ + −

=
+

(41) 

 

By taking the ZMA transform of the linear 

and nonlinear differential operators as 

illustrated in equation (25) -(29) we have: 
2

3

2ma ma t

u u
Z Z u u u

t x


   
= + − +   

    
(42) 

 

( ) ( )
2

3

2

, ,0ma

ma t

Z v s u x

u
sv Z u u u

x


 =

  
+ + − −  

  
         

(43) 

By taking the inverse ZMA transform of (43) 

and simplifying accordingly, we obtain: 

( )
( ) ( )

( )
2

1 3

2

1 1
1 1

2 2,

px px

px px

ma ma t

m e m e

u x t
e e

u
Z sv Z u u u

x


−

−

−

+ + −

=
+

   
+ + − −   

    

(44) 



Published by The College of Science & Information Technology (COSIT), TASUED, Vol. 18, No. 1, pp. 137-156. 

 

145 

 

Next scheme here is to implement the 

projected differential transform scheme on 

equation (44) 

( )
( ) ( )

( )

( )
( )

( ) ( ) ( )

( )

2

2

1

0 0

1 1
1 1

2 2, 1

,
,

, , ,

,

px px

px px

k r

ma ma

r s

t

m e m e

u x k
e e

u x k
u x k

x

Z sv Z u x s u x r s u x k r

u x k

−

−

−

= =

+ + −

 + = +
+

   
+   

   
   

− − −   
   
   −
   
    



 (45) 

Equation (45) can be expressed concisely as; 

( )
( ) ( )

( )

( ) ( ) ( ) ( ) 1

1 2 3 4

1 1
1 1

2 2, 1

px px

px px

ma ma

m e m e

u x k
e e

Z sv Z k k k k   

−

−

−

+ + −

+ =
+

  + + − −  

(46) 

Here in (46) above, ( ) ( )1 4, ,k k  are the 

projected differential transforms
( )2

2

,u x k

x




,

( ),u x k , 

( ) ( ) ( )
0 0

, , ,
k r

r s

u x s u x r s u x k r
= =

− − , 

( ),tu x k for the decomposed nonlinear 

terms respectively. Thus, we can have our first 

solution term from equation (44) as:  

 

( )

( )

( )

2

2

2 2

2 1

2 2 2

2 1

2 2 2

0
2 1 2 1

2 2 2 2

1
1 2 1

2

1
1 2 1

2,

x

x

x x

e

e

u x t

e e





 





+

+
−

+ +
−

+ +

+ − +

=
 
 +
 
 

 (47) 

Now, at 0k = , we obtain: 

( )

( )

( )

( ) ( )

1

1

2

3 4

0

,1 0

0 0

ma mau x Z sv Z





 

−

   
   

= +   
   

− −     

 (48) 

 

The zeroth PDTM term computation 

From the equation (48), 

( )
( )2

1 2

,0
0

u x

x



=


; ( ) ( )2 0 ,0u x = ; 

( ) ( ) ( ) ( )
0 0 0

3

0 0 0

0 , , ,
r k

s s r

u x s u x r s u x k r
= =

= = =

= − −  

; ( ) ( )4 0 ,0tu x =  

Let ( ) ( ) ( ) ( )0 1 2 3 40 0 0 0    = + − − , 

then we can write that; 
3

0 0 0 0 0xx tu u u u = + − −          (49) 

Thus, we can express our second solution term 

( )1 ,u x t as: 

( )
0 01

1 3

0 0

,
xx

ma ma

t

u u
u x t Z sv Z

u u

−
  + 

=    
− −     

  (50) 

( )  1

1 0, ma mau x t Z sv Z −   =      (51) 

 

By computing the polynomial and derivative 

terms in 0 accordingly, we obtain 

 

( )

( )

3 2

4

2

2 4
0 3

2 2

4 4 2

2 4

2

1 1
4 1

2

2 1

mx

t

mx

t

mx mx

mx

t

e

m e

e e
m e



 



−

−

 
 
 
  = − + + +  

 
 + 

    + + −     

(52) 

Consequently,  

( )
( )

( )

3 2

4

2

1 4
1 3 22 2

4 4

2

4

2

2

4 11 1
,

2

2 1

mx

t

mxt

ma ma

mx mx

mxt

e

u x t Z sv Z e
m

e e

e
m







−

−

−

    
    
    
    
  +   

= − +     
+        

+        +     +      −       

 

 

By simplifying the ZMA operators 

appropriately, 
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( )

( )

( )

1

3 2

4

2

2 4
3

2 2

4 4 2

2 4

,

2

1
4 1

2

2 1

mx

t

mx

t

mx mx

mx

t

u x t

e

t
m e

e e
m e







−

−

=

 
 
 
  − + + +  

 
 + 

    + + −     

(53) 

But we recall that
22 1m = + ; and 

( )2 22 1m = +  

( )

( ) ( )

( )

( ) ( )

( ) ( )

2

2

2 2

2

1

3 2
2 1

4

2
2 1

4
3 22 2

2 1 2 1
4 4

2
2 1

4

2

,

2

4 11

2 2 1

2 1

2 1

x

t

xt

x x

xt

u x t

e

t
e

e e

e





 













+

+

+ − +

− +

 =

 
 
 
 

 + 
− +   

+ +     
+      +   +  

 − +   
(54) 

Equation (54) above gives us the second 

solution term for the G-L problem. 

Next and similarly, for the third solution 

term ( )2 ,u x t , we have from the equation (46) 

when 1k = , that: 

 

( )

( )

( )

( ) ( )

1

1

2

3 4

1

,2 1

1 1

ma mau x Z sv Z





 

−

   
   

= +   
   

− −     

 (55) 

 

We shall compute the PDTM terms 

appropriately just as computed in 6.1 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The first order PDTM computation 

 

( )
( )2

1 2

,1
1

u x

x



=


; ( ) ( )2 1 ,1u x = ; 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

0 0 0

3

0 0 0

1 1

0 0

1 1

1 0

1 1

1 1

1 , , ,

, , ,

, , ,

, , ,

r k

s s r

r s

r s

r s

u x s u x r s u x k r

u x s u x r s u x k r

u x s u x r s u x k r

u x s u x r s u x k r


= =

= = =

= =

= =

= =

= − −

+ − −

+ − −

+ − −

  







; 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

3 1 ,0 ,0 ,0

,0 ,0 ,1

,0 ,1 ,0

,1 ,0 ,0

u x u x u x

u x u x u x

u x u x u x

u x u x u x

 =

+ +

+

; 

( ) 2

3 0 0 11 3u u u = + ; ( ) ( )4 1 ,1tu x =  

Let ( ) ( ) ( ) ( )1 1 2 3 41 1 1 1    = + − − , then 

we can write that; 
3 2

1 1 1 0 0 1 03xx tu u u u u u = + − − −  

     

  (56) 

Thus, we can express our third solution term 

( )2 ,u x t as; 

( )
3

1 1 01

2 2

0 1 0

,
3

xx

ma ma

t

u u u
u x t Z sv Z

u u u

−
   + −
 =   

− −      

(57) 

( )  1

2 1, ma mau x t Z sv Z −   =              (58) 

 

 

By computing the polynomial and derivative 

terms in 1 accordingly, we obtain 1  

Consequently,  ( )1 ,u x t  

 

By simplifying the ZMA operators 

appropriately, we have third solution term as: 

( )2 ,u x t                                (59) 

 

Equation (59) above gives us the second 

solution term for the G-L problem. 

( ),U x t                  (60) 
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Similarly, the terms ( ) ( )3 4, , ,u x t u x t to 

desired term are computed in the same manner, 

and, we have the asymptotic solution to the 

real-valued Stochastic Ginzburg-Landau 

equation as: 

     (60) 

 

The convergence of the MPDTM solution 

in (60) here to the exact solution is clarified and 

buttressed with a convergence plot in Fig. (5 - 

6). 

Additionally, just as we have established 

that for 0 = in equation (9), we have for 

equation (60) that when 0 = , then: 
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The above asymptotic solution also 

converges quickly to the exact solution in 

equation (9) which demonstrates par-excellent 

reliability of this technique, in proffering 

asymptotic solutions that is a duplicate of the 

exact solution to the G-L equation. 

 

RESULTS AND DISCUSSION OF 

FINDINGS 

This section of the current investigation has 

carefully focused on the authentication of our 

results obtained by our proposed MPDTM 

scheme. Here, we compare our results via tables 

and graphical illustration with the previously 

obtained from corresponding works of 

literature regarding the solution of the 

Ginzburg-Landau equations. 

Very recently as earlier stated in the section 

2 of this article, Wael W. Mohammed et.al. 

(2021) implemented the Tanh-Coth method to 

obtain the solitary wave solution of the real-

valued Ginzburg-Landau (G-L) equation we 

have investigated in this paper for which the 

comparison of our asymptotic series results 

shall be compared to verify its reliability and 

the efficiency of the method. To achieve this, 

we have computed the result for the G-L 

equation when the multiplicative noise 

parameter  takes an arbitrary value (its 

presence) and when 0 =  respectively for the 

Tables 1 and 2. 

Furthermore, we have presented the exact 

and asymptotic results of the equation (60) by 

taking the Standard Wiener process parameter 

to be a unit step function ( )( )1t = , the 

multiplicative noise 0.35 = and 0 =  at 

3,2,1 === xxx for each value of 

5.0,4.0,3.0,2.0,1.0=t for Table 1 and 2 

respectively. 

  

 

3D, CONVERGENCE, AND PARAMETER 

EFFECT PLOTS 

 
Figure 1. 3D of the exact result in equation (8) when 

 takes an arbitrary value ( )0.35 =  
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Figure 2. 3D of the asymptotic result in equation 

(60) when  takes an arbitrary value ( )0.35 =  

 
Figure 3. 3D of the asymptotic result in equation (8) 

when 0 =  

 
Figure 4. 3D of the asymptotic result in equation (8) 

when 0 =  

 

 
Figure 5. Convergence plot of the series solution in 

equation (60) when 0.35 =  
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Figure 6. Convergence plot of the series solution in 

equation (60) when 0 =  

 

 

 

 

 
Figure 7. The impact of multiplicative noise with 

respect to displacement of particle in the system 

  
Figure 8. The impact of multiplicative noise on 

particle with respect to timeframe in the system 

 

 

 

 
Figure 9. Impact of shifting the time interval on 

system particle’s displacement for 0.35 =  
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Figure 10. Impact of shifting the time interval on 

system particle’s displacement for 0 =  

 

Graphical illustration remarks 

The exact and asymptotic results via table 

of comparison and plots in three-dimensional 

form agreed excellently well when the 

multiplicative noise takes an arbitrary 

parameter and when it is zero. More 

importantly, rapid and spontaneous 

convergence was vividly illuminated from the 

convergence plots of the two cases (when 

0.35 = and 0 = ) as the series solution of 

the proposed method (MPDTM) swiftly 

converges to the exact solution at the third 

iteration, whilst an increase in time and 

multiplicative noise parameter in turn increases 

the concavity of the solution function whilst 

exhibiting the superposition principle for a 

linear system. 

Since the suggested Modified Projected 

Differential Transform Method (MPDTM) 

requires less computational work and is simpler 

than present analytical techniques in the 

academic literature, we can conclude with 

absolute certainty that it is correct, dependable, 

and exceedingly effective in obtaining solution 

for and presenting careful evaluations on 

stochastic differential equations and wider 

classes of PDEs. It also quickly converges of 

results in tables and plots. 

Due to the method’s reliability and 

efficiency, we hereby advocate the proposed 

technique (MPDTM) for the provision of exact 

solutions, generalized solutions, and solitary 

wave solutions to equations in the following 

fields: quantum physics, turbulence theory, 

dynamical systems, reaction-diffusion, fluid 

mechanics, stochastic dynamics, and other 

fields. 
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Table 1.

 

x  t  

Exact MPDTM Error = |Exact-

MPDTM| 

 

 

1=x  

0.1 1.04874026 1.04874025 0.00000001 

0.2 1.08585786 1.08585785 0.00000001 

0.3 1.11789584 1.11789584 0.00000000 

0.4 1.14493990 1.14493990 0.00000000 

0.5 1.16719097 1.16719087 0.00000010 

 

 

 

2=x  

    

0.1 1.25046805 1.25046804 0.00000001 

0.2 1.26608143 1.26608142 0.00000001 

0.3 1.27757221 1.27757218 0.00000003 

0.4 1.28535372 1.28535372 0.00000000 

0.5 1.28983980 1.28984236 0.00000256 

 

 

3=x  

    

0.1 1.36800983 1.36800983 0.00000000 

0.2 1.36775196 1.36775196 0.00000000 

0.3 1.36509375 1.36509375 0.00000000 

0.4 1.36037999 1.36038012 0.00000013 

0.5 1.35392040 1.35392192 0.00000152 

 

 

 

  Table 2.

x  t  

Exact MPDTM Error = |Exact-

MPDTM| 

 

 

1=x  

0.1 0.70205582 0.70205582 0.00000000 

0.2 0.73245356 0.73245356 0.00000000 

0.3 0.76404759 0.76404758 0.00000001 

0.4 0.80218388 0.80218358 0.0000003 

0.5 0.83548353 0.83547986 0.00000037 

 

 

 

2=x  

    

0.1 0.77294225 0.77294226 0.00000001 

0.2 0.80999843 0.80999843 0.00000000 

0.3 0.84224131 0.84224130 0.00000001 

0.4 0.86989152 0.86989128 0.00000024 

0.5 0.89330940 0.89330684 0.00000256 

 

 

3=x  

    

0.1 0.84877174 0.84877174 0.00000000 

0.2 0.87544664 0.87544664 0.00000000 

0.3 0.89798193 0.89798193 0.00000000 

0.4 0.91682730 0.91682743 0.00000013 

0.5 0.93245330 0.93245482 0.00000152 

CONCLUSIONS 

Since the suggested Modified Projected 

Differential Transform Method (MPDTM) 

requires less computational work and is simpler 

than present analytical techniques in the academic 

literature, we can conclude with absolute 

certainty that it is correct, dependable, and 

exceedingly effective in obtaining solution for 

and presenting careful evaluations on stochastic 

differential equations and wider classes of PDEs. 

It also quickly converges of results in tables and 

plots. 
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Due to the method’s reliability and efficiency, we 

hereby advocate the proposed technique 

(MPDTM) for the provision of exact solutions, 

generalized solutions, and solitary wave solutions 

to equations in the following fields: quantum 

physics, turbulence theory, dynamical systems, 

reaction-diffusion, fluid mechanics, stochastic 

dynamics, and other fields. 
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